

Trusted Computing Platforms:
Design and Applications

TRUSTED COMPUTING PLATFORMS:
DESIGN AND APPLICATIONS

SEAN W. SMITH
Department of Computer Science
Dartmouth College
Hanover, New Hampshire USA

Springer

eBook ISBN: 0-387-23917-0
Print ISBN: 0-387-23916-2

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Contents

List of Figures
List of Tables
Preface
Acknowledgments

xiii
xv

xvii
xix

1. INTRODUCTION

1.1

1.2

1.3

1.4

Trust and Computing

Instantiations

Design and Applications

Progression

1

2

2

5

7

2. MOTIVATING SCENARIOS 9

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Properties

Basic Usage

Examples of Basic Usage

Position and Interests

Examples of Positioning

The Idealogical Debate

Further Reading

9

10

12

14

15

18

18

3. ATTACKS 19

3.1 Physical Attack
3.1.1
3.1.2
3.1.3

No Armor
Single Chip Devices
Multi-chip Devices

21
22
23
23

3.2 Software Attacks 24
3.2.1 25Buffer Overflow

vi TRUSTED COMPUTING PLATFORMS

3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

Unexpected Input
Interpretation Mismatches
Time-of-check vs Time-of-use
Atomicity
Design Flaws

25
26
27
28
29

3.3 Side-channel Analysis 30
30
33
34

3.3.1
3.3.2
3.3.3

Timing Attacks
Power Attacks
Other Avenues

3.4 Undocumented Functionality
3.4.1
3.4.2
3.4.3

Example: Microcontroller Memory
Example: FLASH Memory
Example: CPU Privileges

35
36
37
38

3.5 Erasing Data 38

3.6

3.7

System Context

Defensive Strategy

39

41
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5

Tamper Evidence
Tamper Resistance
Tamper Detection
Tamper Response
Operating Envelope

41
41
41
42
42

3.8 Further Reading 42

4. FOUNDATIONS 43

4.1 Applications and Integration 43
4.1.1
4.1.2
4.1.3
4.1.4

Kent
Abyss
Citadel
Dyad

44
44
45
46

4.2 Architectures 48
4.2.1
4.2.2

Physical Security
Hardware and Software

48
49

4.3

4.4

4.5

Booting

The Defense Community

Further Reading

50

52

52

Contents

5. DESIGN CHALLENGES

vii

55

5.1 Context 55
5.1.1
5.1.2

Personal
Commercial

55
56

5.2 Obstacles 57
5.2.1
5.2.2

Hardware
Software

57
59

5.3 Requirements 63
5.3.1
5.3.2
5.3.3

Commercial Requirements
Security Requirements
Authenticated Execution

63
64
66

5.4

5.5

Technology Decisions

Further Reading

67

6. PLATFORM ARCHITECTURE 73

71

6.1 Overview
6.1.1 Security Architecture

73
74

6.2 Erasing Secrets 75
6.2.1
6.2.2
6.2.3

Penetration Resistance and Detection
Tamper Response
Other Physical Attacks

76
76
77

6.3 The Source of Secrets 78
6.3.1
6.3.2
6.3.3

Factory Initialization
Field Operations
Trusting the Manufacturer

78
79
81

6.4 Software Threats 81
6.4.1
6.4.2
6.4.3

Software Threat Model
Hardware Access Locks
Privacy and Integrity of Secrets

82
82
85

6.5 Code Integrity 85
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5

Loading and Cryptography
Protection against Malice
Protection against Reburn Failure
Protection against Storage Errors
Secure Bootstrapping

86
86
87
88
89

6.6 Code Loading 90
6.6.1
6.6.2

Authorities
Authenticating the Authorities

91
92

viii TRUSTED COMPUTING PLATFORMS

6.6.3
6.6.4
6.6.5

Ownership
Ordinary Loading
Emergency Loading

6.7

6.8

6.9

Putting it All Together

What’s Next

Further Reading

7. OUTBOUND AUTHENTICATION

7.1 Problem
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7

The Basic Problem
Authentication Approach
User and Developer Scenarios
On-Platform Entities
Secret Retention
Authentication Scenarios
Internal Certification

7.2 Theory
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7

What the Entity Says
What the Relying Party Concludes
Dependency
Soundness
Completeness
Achieving Both Soundness and Completeness
Design Implications

7.3 Design and Implementation
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

Layer Separation
The Code-Loading Code
The OA Manager
Naming
Summary
Implementation

7.4 Further Reading

8. VALIDATION
8.1 The Validation Process

8.1.1
8.1.2
8.1.3

Evolution
FIPS 140-1
The Process

8.2 Validation Strategy

92
93
96

97

99

99

101

101
102
102
103
104
104
105
107

108
109
109
110
111
112
112
113

114
115
115
116
119
119
120

121

123
124
124
125
126

126

Contents ix

8.3 Formalizing Security Properties 129
8.3.1
8.3.2
8.3.3
8.3.4

Building Blocks
Easy Invariants
Controlling Code
Keeping Secrets

130
131
131
132

8.4

8.5

8.6

8.7

Formal Verification

Other Validation Tasks

Reflection

Further Reading

134

136

138

139

9. APPLICATION CASE STUDIES 141
9.1

9.2

Basic Building Blocks

Hardened Web Servers 142
1429.2.1

9.2.2
9.2.3

The Problem
Using a TCP
Implementation Experience

144
149

9.3 Rights Management for Big Brother’s Computer 152
9.3.1
9.3.2
9.3.3

The Problem
Using a TCP
Implementation Experience

152
153
154

9.4 Private Information 155
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

The Problem
Using a TCP: Initial View
Implementation Experience
Using Oblivious Circuits
Reducing TCP Memory Requirements
Adding the Ability to Update

155
157
158
160
163
165

9.5 Other Projects 167
9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7

Postal Meters
Kerberos KDC
Mobile Agents
Auctions
Marianas
Trusted S/MIME Gateways
Grid Tools

167
167
167
167
168
169
169

9.6

9.7
Lessons Learned

Further Reading

170

171

141

x TRUSTED COMPUTING PLATFORMS

10. TCPA/TCG 173

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Basic Structure

Outbound Authentication

Physical Attacks

Applications

Experimentation

TPM 1.2 Changes

Further Reading

175

178

179

180

180

181

181

11. EXPERIMENTING WITH TCPA/TCG 183

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

Desired Properties

The Lifetime Mismatch

Architecture

Implementation Experience

Application: Hardened Apache

Application: OpenCA

Application: Compartmented Attestation

Further Reading

184

184

185

189

190

191

193

194

12. NEW HORIZONS 195

12.1

12.2

Privilege Architectures

Hardware Research

195

197
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6

XOM
MIT AEGIS
Cerium
Virtual Secure Coprocessing
Virtual Machine Monitors
Others

197
198
199
199
199
200

12.3 Software Research 201
12.3.1
12.3.2

Software-based Attestation
Hiding in Plain Sight

202
202

12.4 Current Industrial Platforms 203
12.4.1
12.4.2
12.4.3

Crypto Coprocessors and Tokens
Execution Protection
Capability-based Machines

203
203
204

12.5 Looming Industry Platforms 204
12.5.1 LaGrande 204

Contents xi

12.5.2
12.5.3

TrustZone
NGSCB

206
206

12.6

12.7

Secure Coprocessing Revisited

Further Reading

208

209

Glossary

References

About the Author

Index

211

221

235

237

List of Figures

5.1
5.2
6.1
6.2
6.3

6.4

6.5
6.6
6.7
7.1
7.2

7.3

7.4

7.5
7.6
7.7
7.8
8.1

8.2

8.3
8.4

Secure coprocessing application structure
The basic hardware architecture.
The basic software architecture.
The authority tree.

Contents of a layer.
Statespace for a layer.

Ordinary code-load command.

Countersignatures.
Authorization of code-load commands.
An emergency code-load command.
Epochs and configurations.
Replacing untrusted software with trusted software creates
problems.
Replacing trusted software with untrusted software creates
problems.

Sketch of the proof of our outbound authentication theorem.
When the code-loading layer updates itself.
Having the certifier outlive a code change creates problems.
Having the certifier outlive the certified can cause problems.
We regenerate certifier key pairs with each code change.
The formal verification process, as we envisioned it before
we started.
The “safe control” invariant.
The “safe zeroization” invariant.
The formal verification process, as it actually happened.

3
68
69
91

93
93
94

95
95
97

105

106

107

113
116
117
118
118

128
132
133
135

1.1

xiv TRUSTED COMPUTING PLATFORMS

8.5
9.1
9.2
9.3
11.1
12.1
12.2

Validation documentation tools.
Revising the SSL handshake to use a trusted co-server.
A switch
Oblivious shuffles with a Benes network
Flow of protection and trust in our TCPA/TCG-based platform.
The standard CPU privilege structure.
The revised CPU privilege structure.

136
150
160
162
188
196
197

List of Tables

6.1
6.2
9.1
9.2

Hardware ratchets protect secrets.
Hardware ratchets protect code.
Performance of an SSL server with a trusted co-server.
Slowdown caused by adding a trusted co-server.

85
87

151
151

Preface

We stand an exciting time in computer science. The long history of special-
ized research building and using security-enhanced hardware is now merging
with mainstream computing platforms; what happens next is not certain but is
bound to be interesting. This book tries to provide a roadmap.

A fundamental aspect of the current and emerging information infrastructure
is distribution: multiple parties participate in this computation, and each may
have different interests and motivations. Examining security in these distributed
settings thus requires examining which platform is doing what computation—
and which platforms a party must trust, to provide certain properties despite
certain types of adversarial action, if that party is to have trust in overall com-
putation. Securing distributed computation thus requires considering the trust-
worthiness of individual platforms, from the differing points of view of the
different parties involved. We must also consider whether the various parties
in fact trust this platform—and if they should, how it is that they know they
should.

The foundation of computing is hardware: the actual platform—gates and
wires—that stores and processes the bits. It is common practice to consider the
standard computational resources—e.g., memory and CPU power—a platform
can bring to a computational problem. In some settings, it is even common
to think of how properties of the platform may contribute to more intangible
overarching goals of a computation, such as fault tolerance. Eventually, we
may start trying to change the building blocks–the fundamental hardware—in
order to better suit the problem we are trying to solve.

Combining these two threads—the importance of trustworthiness in these
Byzantine distributed settings, with the hardware foundations of computing
platforms—gives rise to a number of questions. What are the right trustworthi-
ness properties we need for individual platforms? What approaches can we try
in the hardware and higher-level architectures to achieve these properties? Can

xviii TRUSTED COMPUTING PLATFORMS

we usefully exploit these trustworthiness properties in computing platforms for
broader application security?

With the current wave of commercial and academic trusted computing ar-
chitectures, these questions are timely. However, with a much longer history of
secure coprocessing, secure boot, and other experimentation, these questions
are not completely new. In this book, we will examine this big picture. We
look at the depth of the field: what a trusted computing platform might provide,
how one might build one, and what one might be done with one afterward.
However, we also look at the depth of history: how these ideas have evolved
and played out over the years, over a number of different real platforms—and
how this evolution continues today.

I was drawn to this topic in part because I had the chance to help do some
of the work that shaped this field. Along the way, I’ve enjoyed the privilege of
working with a number of excellent researchers. Some of the work in this book
was reported earlier in my papers [SW99, SPW98, Smi02, Smi01, MSWM03,
Smi03, Smi04], as documented in the “Further Reading” sections. Some of
my other papers expand on related topics [DPSL99, SA98, SPWA99,
JSM01, IS03b, SS01, IS03a, MSMW03, IS04b, IS04a].

Acknowledgments

Besides being a technical monograph, this book also represents a personal
research journey stretching over a decade.

I am not sure how to begin acknowledging all the friends and colleagues
who assisted with this journey. To start with: I am grateful to Doug Tygar and
Bennet Yee, for planting these seeds during my time at CMU and continuing
with friendship and suggestions since; to Gary Christoph and Vance Faber at Los
Alamos, for encouraging this work during my time there; and to Elaine Palmer
at IBM Watson, whose drive saw the defunct Citadel project turn into a thriving
research and product development effort. Steve Weingart and Vernon Austel
deserve particular thanks for their collaborations with security architecture and
formal modeling, respectively. Thanks are also due to the rest of the Watson
team, including Dave Baukus, Ran Canetti, Suresh Chari, Joan Dyer, Bob
Gezelter, Juan Gonzalez, Michel Hack, Jeff Kravitz, Mark Lindemann, Joe
McArthur, Dennis Nagel, Ron Perez, Pankaj Rohatgi, Dave Safford, and David
Toll; to the 4758 development teams in Vimercate, Charlotte, Poughkeepsie,
and Lexington; and to Mike Matyas.

Since I left IBM, this journey has been helped by fruitful discussions with
many colleagues, including Denise Anthony, Charles Antonelli, Dmitri Asonov,
Dan Boneh, Ryan Cathecart, Dave Challener, Srini Devadas, John Erickson,
Ed Feustel, Chris Hawblitzel, Peter Honeyman, Cynthia Irvine, Nao Itoi, Ruby
Lee, Neal McBurnett, Dave Nicol, Adrian Perrig, Dawn Song, and Leendert
van Doorn. In academia, research requires buying equipment and plane tickets
and paying students; these tasks were supported in part by the Mellon Foun-
dation, the NSF (CCR-0209144), AT&T/Internet2 and the Office for Domestic
Preparedness, Department of Homeland Security (2000-DT-CX-K001).

Here at Dartmouth, the journey continued with the research efforts of students
including Alex Barsamian, Mike Engle, Meredith Frost, Alex Iliev, Shan Jiang,
Evan Knop, Rich MacDonald, John Marchesini, Kazuhiro Minami, Mindy
Periera, Eric Smith, Josh Stabiner, Omen Wild, and Ling Yan. My colleagues in

xx TRUSTED COMPUTING PLATFORMS

the Dartmouth PKI Lab and the Department of Computer Science also provided
invaluable helpful discussion, and coffee too.

Dartmouth students Meredith Frost, Alex Iliev, John Marchesini, and Scout
Sinclair provided even more assistance by reading and commenting on early
versions of this manuscript.

Finally, I am grateful for the support and continual patience of my family.

Sean Smith
Hanover, New Hampshire
October 2004

Chapter 1

INTRODUCTION

Many scenarios in modern computing give rise to a common problem: why
should Alice trust computation that’s occurring at Bob’s machine? (The com-
puter security field likes to talk about “Alice” and “Bob” and protection against
an “adversary” with certain abilities.) What if Bob, or someone who has access
to his machine, is the adversary?

In recent years, industrial efforts—such as the Trusted Computing Platform
Association (TCPA) (now reformed as the Trusted Computing Group, TCG),
Microsoft’s Palladium (now the Next Generation Computing Base, NGSCB),
and Intel’s LaGrande—have advanced the notion of a “trusted computing plat-
form.” Through a conspiracy of hardware and software magic, these platforms
attempt to solve this remote trust problem, for various types of adversaries.
Current discussions focus mostly on snapshots of the evolving TCPA/TCG
specification, speculation about future designs, and idealogical opinions about
potential social implications. However, these current efforts are just points on
a larger continuum, which ranges from earlier work on secure coprocessor de-
sign and applications, through TCPA/TCG, to recent academic developments.
Without wading through stacks of theses and research literature, the general
computer science reader cannot see this big picture.

The goal of this book is to fill this gap. We will survey the long history of
amplifying small amounts of hardware security into broader system security.
We will start with early prototypes and proposed applications. We will exam-
ine the theory, design, implementation of the IBM 4758 secure coprocessor
platform, and discuss real case study applications that exploit the unique capa-
bilities of this platform. We will discuss how these foundations grow into the
newer industrial designs such as TCPA/TCG, as well as alternate architectures
this newer hardware can enable. We will then close with an examination of
more recent cutting-edge experimental work.

2 TRUSTED COMPUTING PLATFORMS

1.1 Trust and Computing
We should probably first begin with some definitions. This book uses the term

trusted computing platform (TCP) in its title and throughout the text, because
that is the term the community has come to use for this family of devices.

This terminology is a bit unfortunate. “Trusted computing platform” implies
that some party trusts the platform in question. This assertion says nothing about
who that party is, whether the platform is worthy of that party’s trust, and on
what basis that party chooses to trust it. (Indeed, some wags describe “trusted
computing” as computing which circumstances force one to trust, like it or not.)

In contrast, the devices we consider involve trust on several levels. The
devices are, to some extent, worthy of trust: physical protections and other
techniques protect them against at least some types of malicious actions by
an adversary with direct physical access. A relying party, usually remote, has
the ability to choose to trust that the computation on the device is authentic,
and has not been subverted. Furthermore, typically, the relying party does not
make this decision blindly; the device architecture provides some means to
communicate its trustworthiness. (I like to use the term “trustable” for these
latter two concepts.)

1.2 Instantiations
Many types of devices either fit this definition of “trusted computing plat-

form,” or have sufficient overlap that we must consider their contribution to the
family’s lineage.

We now survey the principal classes.

Secure Coprocessors. Probably the purest example of a trusted computing
platform is a secure coprocessor.

In computing systems, a generic coprocessor is a separate, subordinate unit
that offloads certain types of tasks from the main processing unit. In PC-class
systems, one often encounters floating-point coprocessors to speed mathemati-
cal computation. In contrast to these, a secure coprocessor is a separate process-
ing unit that offloads security-sensitive computations from the main processing
unit in a computing system. In hindsight, the use of the word “secure” in this
term is a bit of a misnomer. Introductory lectures in computer security often rail
against using the word “secure” in the absence of parameters such as “achieving
what goal” and “against whom.”

From the earliest days, secure coprocessors were envisioned as a tool to
achieve certain properties of computation and storage, despite the actions of
local adversaries—such as the operator of the computer system, and the com-
putation running on the main processing unit. (Dave Safford and I used the term
root secure for this property [SS01].) The key issue in secure coprocessors is

Introduction 3

Figure 1.1. In the secure coprocessor model, a separate coprocessor provides increased pro-
tections against the adversary. Sensitive applications can be housed inside this protected co-
processor; other helper code executing inside the coprocessor may enhance overall system and
application security through careful participation with execution on the main host.

not security per se, but is rather the establishment of a trust environment dis-
tinct from the main platform. Properly designed applications running on this
computing system can then use this distinct environment to achieve security
properties that cannot otherwise be easily obtained. Figure 1.1 sketches this
approach.

Cryptographic Accelerators. Deployers of intensively cryptographic com-
putation (such as e-commerce servers and banking systems) sometimes feel
that general-purpose machines are unsuitable for cryptography. The modular
mathematics central to many modern cryptosystems (such as RS A, DSA, and
Diffie-Hellman) becomes significantly slower once the modulus size exceeds
the machine’s native word size; datapaths necessary for fast symmetric cryp-
tography may not exist; special-purpose functionality, like a hardware source
of random bits, may not be easily available; and the deployer may already have
a better use for the machine’s resources.

Reasons such as these gave rise to cryptographic accelerators: special-
purpose hardware to off-load cryptographic operations from the main comput-
ing engines. Cryptographic accelerators range from single-chip coprocessors
to more complex stand-alone modules. They began to house sensitive keys,
to incorporate features such as physical security (to protect these keys) and
programmability, (to permit the addition of site-specific computation). Conse-
quently, cryptographic accelerators can begin to to look like trusted computing
platforms.

Personal Tokens. The notion of a personal token—special hardware a user
carries to enable authentication, cryptographic operations, or other services—

4 TRUSTED COMPUTING PLATFORMS

also overlaps with the notion of a trusted computing platform. Personal tokens
require memory and typically host computation. Depending on the application,
they also require some degree of physical security. For one example, physical
security might help prevent a thief (or malicious user) from being able to learn
enough from a token to create a useful forgery. Physical security might also
help to prevent a malicious user from being able to amplify his or her privi-
leges by modifying token state. Form factors can include smart cards, USB
keyfobs, “Dallas buttons” (dime-sized packages from Dallas Semiconductor),
and PCMCIA/PC cards.

However, because personal tokens typically are mass-produced, carried by
users, and serve as a small part of a larger system, their design tradeoffs typ-
ically differ from higher-end trusted computing platforms. Mass production
may require lower cost. Transport by users may require that the device with-
stand more extreme environmental stresses. Use by users may require displays
and keypads, and may require explicit consideration of usability and HCISEC
considerations. Use within a larger system may permit moving physical secu-
rity to another part of the system; for example, most current credit cards have
no protections on their sensitive data—the numbers and expiration date—but
the credit card system is still somehow solvent.

Dongles. Another variation of a trusted computing platform is the dongle—a
term typically denoting a small device, attached to a general purpose machine,
that a software vendor provides to ensure the user abides by licensing agree-
ments. Typically, the idea here is to prevent copying the software. The main
software runs on the general purpose machine (which presumably is at the
mercy of the malicious user); this software then interacts with the dongle in
such a way that (the vendor hopes) the software cannot run correctly without
the dongle’s response, but the user cannot reverse-engineer the dongle’s action,
even after observing the interaction.

Dongles typically require some degree of physical security, since easy du-
plication would enable easy piracy.

Trusted Platform Modules. Current industry efforts center on a trusted plat-
form module (TPM): an independent chip, mounted on the motherboard, that
participates and (hopefully) increases the security of computation within the
machine. TPMs create new engineering challenges. They have the advantage
of potentially securing the entire general purpose machine, thus overcoming the
CPU and memory limits of smaller, special-purpose devices; they also let the
trusted computing platform more easily accommodate legacy architectures and
software. On the other hand, providing effective security for an entire system
by physically protecting the TPM and leaving the CPU and memory exposed is

Introduction 5

a delicate matter; furthermore, the goal of adding a TPM to every commodity
machine may require lower cost, and lower physical security.

Hardened CPUs. Some recent academic efforts seek instead to add physical
security and some additional functionality to the CPU itself. Like the indus-
trial TPM approach, this approach can potentially transform an entire general
purpose machine into a trusted computing platform. By merging the armored
engine with the main processing site, this approach may yield an easier design
problem than the TPM approach; however, by requiring modifications to the
CPU, this approach may also make it harder to accommodate legacy architec-
tures.

Security Appliances. Above, we talked about types of devices one can add to
a general-purpose machine to augment security-related processing. Other types
of such specialized security appliances exist. For example, some commercial
firms market hardened network interface cards (NICs) that provide transparent
encryption and communication policy between otherwise unmodified machines
in an enterprise. For another example, PC-based postal meters can also require
hardened postal appliances at the server end—since a malicious meter vendor
might otherwise have motive and ability to sell postage to his or her customers
without reimbursing the postal service. Essentially, we might consider such
appliances as a type of trusted computing platform pre-bundled with a particular
application.

Crossing Boundaries. However, as with many partitions of things in the real
world, the dividing line between these classes is not always clear. The IBM4758
secure coprocessor platform drew on research into anti-piracy dongles, but IBM
marketed it as a box that, with a free software application, the customer could
turn into a cryptographic accelerator. (Nevertheless, many hardened postal ap-
pliances are just 4758s with special application software.) Some senior security
researchers assert that secure coprocessing experiments on earlier generation
IBM cryptographic accelerators predate the anti-piracy work. Some engineers
have observed that current TPM chips are essentially smart card chips, repack-
aged. Other engineers assert that anything can be transformed into a PCMCIA
token with enough investment; secure NICs already are.

1.3 Design and Applications
Many questions play into how to build and use a trusted computing platform.

Threat Model. Who are the adversaries? What access do they have to the
computation? How much resources and time are they willing to expend? Are
there easier ways to achieve their goal than compromising a platform? Will

6 TRUSTED COMPUTING PLATFORMS

compromise of a few platforms enable systematic compromise of many more?
Might the adversary be at the manufacturer site, or the software developer site,
or along the shipping channel?

Deployment Model. A trusted computing platform needs to make its way
from its manufacturer to the user site; the application software also needs to
make its way from its developer to the trusted computing platform. The paths
and players involved in deployment create design issues. Is the device a generic
platform, or a specific appliance? Does the software developer also ship hard-
ware? If software installation happens at the user site, how does a remote party
determine that the executing software is trustworthy? Is the device intended to
support multiple applications, perhaps mutually hostile?

More issues arise once the platform is actually configured and deployed.
Should the platform support code maintenance? Can the platform be re-used
for another application? Can an installation of an application be migrated,
with state, to another trusted computing platform? Can physical protections be
turned on and off—and if so, what does this mean for the threat model? Can
we assume that deployed platforms will be audited?

Architecture. How do we balance all these issues, while building a platform
that actually does computation?

Basic performance resources comprise one set of issues. How much power
does the CPU have? Does the platform have cryptographic engines or net-
work connections? More power makes life easier for the application developer;
however, more power means more heat, potentially complicating the physical
security design. User interfaces raise similar tradeoffs.

Memory raises additional questions. Besides the raw sizes, we also need to
consider the division between types, such as between volatile and non-volatile,
and between what’s inside the physical protection barrier, and what lies outside
(perhaps accessible to an adversary). Can a careful physical attack preserve the
contents of non-volatile memory? What can an adversary achieve by observing
or manipulating external memory?

Security design choices also interact with architecture choices. For example,
if an on-the-motherboard secure chip is intended to cooperate with the rest of
the machine to form a trusted platform, then the architecture needs to reflect
the mechanics of that cooperation. If a general-purpose trusted platform is
intended to persist as “secure” despite malicious applications, then we may re-
quire additional hardware protection beyond the traditional MMU. If we intend
the platform to destroy all sensitive state upon tamper, then we need to be sure
that all components with sensitive state can actually be zeroized quickly.

Introduction 7

Applications. All these issues then play into the design and deployment of
actual applications.

Is the trusted platform secure enough for the environment in which it must
function? Is it economically feasible and sufficiently robust? Can we fit the
application inside the platform, or must we partition it? Can we assume that
a platform will not be compromised, or should we design the application with
the idea that an individual compromise is unlikely but possible? How does the
application perform? Is the codebase large enough to make updates and bug
fixes likely—and if so, how does this mesh with the platform’s code architec-
ture? Will the application require the use of heterogeneous trusted comput-
ing platforms—and if so, how can it tell the difference? Finally, why should
anyone believe the application—or the trusted computing platform underneath
it—actually works as advertised?

1.4 Progression
In what follows, we will begin by laying out the big picture. Modern com-

puting raises scenarios where parties need to trust properties of remote com-
putation (Chapter 2); however, securing computation against an adversary with
close contact is challenging (Chapter 3). Early experiments laid the groundwork
(Chapter 4) for the principal commercial trusted computing efforts:

High-end secure coprocessors—such as the IBM 4758—built on this foun-
dation to address these trust problems (Chapter 5 through Chapter 9).

The newer TCPA/TCG hardware extends this work, but enables a different
approach (Chapter 10 through Chapter 11).

Looming industrial efforts—such as the not-yet-deployed NGSCB/Palladium
and LaGrande architectures—as well as ongoing academic research explore dif-
ferent hardware and software directions (Chapter 12).

Chapter 2

MOTIVATING SCENARIOS

In this chapter, we try to set the stage for our exploration of trusted com-
puting platforms. In Section 2.1, we consider the adversary, what abilities and
access he or she has, and what defensive properties a trusted computing platform
might provide. In Section 2.2, we examine some basic usage scenarios in which
these properties of a TCP can help secure distributed computations. Section 2.3
presents some example real-world applications that instantiate these scenarios.
Section 2.4 describes some basic ways a TCP can be positioned within a dis-
tributed application, and whose interests it can protect; Section 2.5 provides
some real-world examples. Finally, although this book is not about ideology,
the idealogical debate about the potential of industrial trusted computing efforts
is part of the picture; Section 2.6 surveys these issues.

2.1 Properties
In its classic conception, a trusted computing platform such as a secure

coprocessor is an armored box that does two things:

It protects some designated data storage area against an adversary with
certain types of direct physical access.

It endows code executing on the platform with the ability to prove that it is
running within an appropriate untampered environment.

What types of attacks the platform defends against, and exactly how code does
this attestation, are issues for the platform architect.

In an informal mental model of a distributed computing application, we map
computation and data to platforms distributed throughout physical space. Users
(including potential adversaries) are also distributed throughout this space. Co-
location of a user and a platform gives that user certain types of access to

10 TRUSTED COMPUTING PLATFORMS

that platform: through “ordinary” usage methods as well as malicious attack
methods (although the distinction between the two can sometimes reduce to how
well the designer anticipated things). A user can also reach a platform over a
network connection. However, in our mental model, direct co-location differs
qualitatively. To illicitly read a stored secret over the network, a user must find
some overlooked design or implementation flaw in the API. In contrast, when
the user is in front of the machine, he or she could just remove the hard disk.

Not every user can reach every location. The physical organization of space
can prevent certain types of access. For example, an enterprise might keep
critical servers behind a locked door. Sysadmins would be the only users with
“ordinary” access to this location, although cleaning staff might also have “or-
dinary” access unanticipated by the designers. Other users who wanted access
to this location would have to take some type of action—such as picking locks
or bribing the sysadmins—to circumvent the physical barriers.

The potential co-location of a user and a platform thus increases the potential
actions a user can take with that platform, and thus increases the potential
malicious actions a malicious user can take. The use of a trusted platform
reduces the potential of these actions. It is tempting to compare a trusted
platform to a virtual locked room: we move part of the computation away from
the user and into a virtual safe place. However, we must be careful to make
some distinctions. Some trusted computing platforms might be more secure
than a machine in a locked room, since many locks are easily picked. (As
Bennet Yee has observed, learning lockpicking was standard practice in the
CMU Computer Science Ph.D. program.) On the other hand, some trusted
computing platforms may be less secure than high-security areas at national
labs. A more fundamental problem with the locked room metaphor is that, in
the physical world, locked rooms exist before the computation starts, and are
maintained by parties that exist before computation starts. For example, a bank
will set up an e-commerce server in a locked room before users connect to it,
and it is the bank that sets it up and takes care of it. The trusted computing
platform’s “locked room” can be more subtle (as we shall discuss).

2.2 Basic Usage
This discussion leaves us with the working definition: a TCP moves part

of the computation space co-located with the user into a virtual locked room,
not necessarily under any party’s control. In more concrete terms, this tool has
many potential uses, depending on what we put in this separate environment.
At an initial glance, we can look on these as a simple 2x2 taxonomy: secrecy
and/or authenticity, for data and/or code.

Since we initially introduced this locked room as a data storage area, the first
thing we might think of doing is putting data there. This gives secrecy of data.
If there is data we do not want the adversary to see, we can shelter it in the

Motivating Scenarios 11

TCP. Of course, for this protection to be meaningful, we also need to look at
how the data got there, and who uses it: the implicit assumption here is that the
code the TCP runs when it interacts with this secure storage is also trustworthy;
adversarial attempts to alter it will also result in destruction of the data.

In Chapter 1, we discussed the difference between the terms “trustworthy”
and “trustable”. Just because the code in the TCP might be trustworthy, why
should a relying party trust it? Given the above implicit assumption—tampering
code destroys the protected data—we can address this problem by letting the
code prove itself via use of a key sheltered in the protected area, thus giving us
authenticity of code.

In perhaps the most straightforward approach, the TCP would itself generate
an RSA key pair, save the private key in the protected memory, and release
the public key to a party who could sign a believable certificate attesting to the
fact that the sole entity who knows the corresponding private key is that TCP,
in an untampered state. This approach is straightforward, in that it reduces
the assumptions that the relying party needs to accept. If the TCP fails to be
trustworthy or the cryptosystem breaks, then hope is lost. Otherwise, the relying
party needs only needs to accept that the CA made a correct assertion.

Another public key approach involves having an external party generate the
key pair and inject the private key, and perhaps escrow it as well. Symmetric
key approaches can also work, although the logic can be more complex. For
example, if the TCP uses a symmetric key as the basis for an HMAC to prove
itself, the relying party must also know the symmetric key, which then requires
reasoning about the set of parties who know the key, since this set is no longer
a singleton.

Once we have set up the basis for untampered computation within the TCP to
authenticate itself to an outside party—because, under our model, attack would
have destroyed the keys—we can use this ability to let the computation attest
to other things, such as data stored within the TCP. This gives us authenticity
of data. We can transform a TCP’s ability to hide data from the adversary into
an ability to retain and transmit data whose values may be public—but whose
authenticity is critical.

Above, we discussed secrecy of data. However, in some sense, code is data.
If the hardware architecture permits, the TCP can execute code stored in the
protected storage area, thus giving us secrecy of code. Carrying this out in
practice can be fairly tricky; often, designers end up storing encrypted code in
a non-protected area, and using keys in the protected area to decrypt and check
integrity. (Chapter 6 will discuss this further.) An even simpler approach in this
vein is to consider the main program public, but (in the spirit of Kerckhoff’s
law) isolate a few key parameters and shelter them in the protected storage.

However, looking at the potential taxonomy simply in terms of a 2x2 ma-
trix overlooks the fact that a TCP does not just have to be passive receptacle

12 TRUSTED COMPUTING PLATFORMS

that holds code and data, protected against certain types of adversarial attack.
Rather, the TCP houses computation, and as a consequence of this protected en-
vironment and storage, we can consider the TCP as a computational entity, with
state and potentially aware of real time. This entity adds a new column to our
matrix: rather than just secrecy and authenticity, we can also consider guard-
ing. Whether a local user can interact with the stored data depends on whether
the computational guard lets him or her; whether a local user can invoke other
computational methods depends on whether the guard says it is permissible.

2.3 Examples of Basic Usage
Secrecy of Data. An axiom of most cryptographic protocols is that only the
appropriate parties know any given private or secret key. Consequently, a natural
use of TCPs is to protect cryptographic keys. A local user Bob would rather not
have his key accessible by a rogue officemate; an e-commerce merchant Alice
would rather not have her SSL private key accessible by an external hacker or
a rogue insider.

Authenticity of Code. Let’s continue the SSL server example. Bob might
point his browser to Alice’s SSL server because he wants to use some service
that Alice advertises. The fact that the server at the other end of the Internet
tunnel proved knowledge of a private key does not mean that this server will
actually provide that service. For example, Bob may wish to whisper his private
health information so Alice’s server can calculate what insurance premium to
charge him; he would rather Alice just know the premium, rather than the
health information. For another example, perhaps Alice instead is a healthcare
provider offering an online collection of health information. Bob might wish to
ask Alice for a record pertaining to some sensitive disease, and he would rather
no one—not even Alice—know which topic he requested.

In both these cases, Bob wants to know more than just that the server on the
end of the tunnel knows the private key—he also wants to know that the server
application that wielded this data and provides this service actually abides by
these privacy rules.

Authenticity of Data. Suppose instead that Alice participates in a distributed
computation in which she needs to store a critical value on her own machine.
For example, we can think of an “e-wallet” where the value is the amount cash
the wallet holds, or a game in which the value is the number of points that Alice
has earned. We might even think more generally: perhaps this value is the audit
log of activity (potentially from hackers) on Alice’s machine.

In all these situations, the value itself might reasonably be released to Alice
and to remote parties (under the appropriate circumstances). However, in these
situations, parties exist who might have access to this value, and might have

Motivating Scenarios 13

motivation to alter it. Alice may very well have motivation to increase her wallet
and point score; an attacker who’s compromised Alice’s machine might very
well want to suppress or alter the audit log. The remote party wants assurance
that the reported value is accurate and current.

Secrecy of Code. Despite textbook admonitions against “security through
obscurity,” scenarios still arise in the real world where the internal details of a
program are still considered proprietary. For example, credit card companies
use various advanced data mining approaches to try to identify fraudulent ac-
count activity and predict which accounts will default, and regard the algorithm
details as closely held secrets. Similarly, insurance companies may regard as
proprietary the details of how they calculate premiums based on the information
the applicant provided.

If Alice is such a party, then she would not want to farm her code out to
Bob’s site unless Bob could somehow assure her that the details of the code
would not leak out. In this case, the TCP enables an application that otherwise
might not be reasonable.

Guarded Data. In the e-wallet case above, Alice’s TCP holds a register indi-
cating how much money Alice’s wallet holds. Consider how this value should
change: it should only increase when the e-wallet of some Bob is transferring
that amount to it; it should only decrease when Alice’s e-wallet is transferring
that amount to the e-wallet of some Bob. In both these situations, the exchange
needs to be fully transactional: succeeding completely or failing completely,
despite potential network and machine failures.

In this case, the relying party needs to do more than just trust that the value
allegedly reported by Alice’s e-wallet was in fact reported by Alice’s e-wallet.
Rather, the relying party also needs to be able to trust that this value (and the
values in all the other e-wallets) has only changed in accordance with these
transactional rules. By providing an authenticated shelter for code interacting
with protected data, a TCP can address this problem.

For another case, consider an electronic object, such as a book or a movie,
whose usage is governed by specific licensing rules. For example, the book
may be viewed arbitrarily, but only on that one machine; the movie might have
the additional restrictions of being viewed only N complete times, and only
at ordinary speed. In both cases, a TCP could store the protected data (or the
unique keys necessary to decrypt it), as well as house a program that uses its
knowledge of state and time to govern the release of the protected object.

Of course, for this technology to be effective against moderately dedicated
attackers, either the TCP needs to have an untappable I/O channel to release the
material, or the material that is released during ordinary use must be somehow

14 TRUSTED COMPUTING PLATFORMS

inappropriate for making a good pirated copy. (For one examples, we could
use the TCP to insert watermarks and fingerprints into the displayed content.)

The notion of a protected database of sensitive information—where stake-
holder policy dictates that accesses be authorized, specific, and rare—satisfies
this latter condition. One example of such a database might be archives of
network traffic, saved for later use in forensic investigation.

Guarded Code. As a natural extension to the above DRM example, we could
change the book to a program—since the assumption that the adversary would
not reverse-engineer the program solely from the I/O behavior observed during
normal use is far more reasonable. In this case, the guard would prevent the
program from operating—or migrating out of the TCP—unless these actions
comply with the license restrictions. For the case in which the TCP is too
limited in computational power to accommodate the program it is intended to
protect, researchers have proposed partitioned computation: isolating a critical
piece of the program that is hard to reverse-engineer, and protecting that piece
inside the TCP.

A more trivial example would be a cryptographic accelerator: we do not
want the TCP to just store the keys; we also want it to use the keys only when
properly authorized, and only for the intended purpose. (As recent research
shows, doing this effectively in practice, for current cryptographic hardware
supporting current commodity PCs, is rather tricky.)

2.4 Position and Interests
Putting trusted computing protections in place for something that occurs only

in one place involving one party does not achieve much. Arguably, TCPs only
make sense in the context of a larger system, distributed in space and involving
several parties. In the current Internet model, the initial way we think of such
a system is as a local client interacting with a remote server. Typically, these
terms connote several asymmetries: the client is a single user but the server
is a large organization; the client is a small consumer but the server is a large
content provider; the client handles rather little traffic, but the server handles
much; the client has a small budget for equipment, but the server has a large
one.

TCPs need to exist in a physical location, and to provide a virtual island there
representing the interests of a party at another location. Initially, then, we can
position a TCP in two settings:

at the client, protecting the interests of the server,

or at the server, protecting the interests of the clients.

However, like most things initial, this initial view misses some subtleties.

Motivating Scenarios 15

Sometimes, a TCP at Alice’s site can advance her own interests, much as a
bank vault helps a bank. The TCP can help her protect her own computa-
tion against adversaries and insider attack. In e-commerce scenarios, this
protection can even give her a competitive advantage.

The client-server model may indeed describe much distributed computation.
However, it does not describe all of it: for example, some systems consist
instead of a community of peers.

Naively, we think of a TCP as protecting some party’s interests. However,
the number of such parties does not necessarily have to be one.

Naively, we also think of a TCP providing a protected space that extends the
computational space controlled by some remote party. However, the number
of parties who “control” the TCP’s protected space does not necessarily have
to be nonzero. E.g., if Alice is to reasonably gain a competitive advantage
by putting some of here computation into a locked box, then the locked box
must be subsequently under no one’s control.

2.5 Examples of Positioning
Client-side. The standard DRM examples sketched above constitute the clas-
sic scenario where the TCP lives at the client side and protects the interests of
a remote server (in this case, the content provider). The operator of the local
machine would benefit from subverting the protections, in order to be able to
copy the material or watch the movie after the rental period has expired. Sym-
metrically, the remote content provider would (presumably) suffer from this
action, due to lost revenue.

Server-side. Above, we also sketched examples where the TCP lived at the
server side:

enforcing that access to archived sensitive data follows the policy agreed to
before the archiving started; or

providing a Web site where clients can request sensitive information, without
the server learning what was requested.

These cases invert the classic DRM scenario. The TCP now lives at the server
side and protects the client’s interests by restricting what the server can do.

Protecting own interests. This privacy-enhanced directory application also
inverts the standard model, in that the TCP at the server side also arguably
advances the server’s interests as well: the increased assurance of privacy may
draw more clients (and perhaps insulate the server operator against evidence

16 TRUSTED COMPUTING PLATFORMS

discovery requests). Another example would be an e-commerce site that pro-
vides gaming services to its clients, and uses a TCP to give the clients assurance
that the gaming operations are conducted fairly. By using the TCP to provide
a space for fair play, the server operator advances her own interests: because
more clients may patronize a site that has higher assurance of fairness.

We can also find examples of this scenario at the client. Consider the problem
of an enterprise whose users have certified key pairs, but insist on using them
from various public access machines, exposed to potential compromise. In one
family of solutions, user private keys live in some protected place (such as at a
remote server, perhaps encrypted). When Alice wishes to use her private key
from a public machine, she initiates a protocol that either downloads the key, or
(in one subfamily) has the machine generates a new key pair, which the remote
server certifies.

In these settings, Alice is at risk: an adversary who has compromised this
public machine can now access the private key that now lives there. However,
suppose this machine used one of the newer TCP approaches that attempt to
secure an entire desktop. We could then amend the key protocol to have the re-
mote server verify the integrity of the client machine before transferring Alice’s
credential—which helps Alice. Thus, by using a TCP at the client to restrict
the client’s abilities, we advance the interests of the client.

Multiple parties. As we observed, the parties and protected interests involved
can be more complex than just client and server. Let’s return the health-
insurance example. Both the client and the insurance provider wish to see
that an accurate premium is calculated; the client further wishes to see that
the private health information he provided remains private. Using a TCP at
the insurance provider thus advances the interests of multiple parties: both the
client and the server. We can take this one step further by adding an insurance
broker who represents several providers. In this case, any particular provider
might farm out her premium-calculation algorithm to the broker, but only if the
broker can provide assurances that the details of the algorithm remain secret.
So, a TCP at the broker now advances the privacy interests of both the con-
sumer and the external provider, the accuracy interests of all three parties, and
the competitive advantage of the broker.

For another example, consider the challenges involved in carrying out an
online auction. Efficiency might argue for having each participant send in an
encoding of his or her bidding strategy, and then having a trusted auctioneer
play the strategies against each other and announce the winner. However, this
approach raises some security issues. Will the auctioneer fairly play the strate-
gies against each other? Will the auctioneer reveal private details of individual
strategies? Will the auctioneer abide by any special rules advertised for the auc-

Motivating Scenarios 17

tion? Can any given third party verify that the announced results of an auction
are legitimate?

We could address these issues by giving the auctioneer a TCP, to house the
auction software, securely catch strategies, and sign receipts attesting to the
input, output, and auction computation. The TCP here protects the interests of
each of the participants against insider attack at the auction site and (depending
on how the input strategies are packaged) against fraudulent participant claims
about their strategies.

Community of peers. Consider the e-wallet example from earlier. If Bob can
manage to increase the value of cash his e-wallet stores without going through
the proper protocol, then he essentially can mint money—which decreases the
value of everyone’s money. In this case, the TCP at a client is protecting the
interests of an entire community of peer clients.

Of course, the classic instantiation of such community-oriented systems is
peer-to-peer computation: where individual clients also provide services to
other clients, and (often) no centralized servers exist. Investigating the embed-
ding of TCPs in P2P computation is an area of ongoing research. For example,
in distributed storage applications that seek to hide the location and nature of
stored items, using TCPs at the peers can provide an extra level of protection
against adversaries. For another example, the SEmi-trusted Mediator (SEM)
approach to PKI breaks user private keys into two pieces (using mediated RSA),
and stores on piece at a trusted server, who (allegedly) only uses it under the
right circumstances. We could gain scalability and fault tolerance by by replac-
ing the server with a P2P network; using TCPs at the peers would give us some
assurance that the key-half holders are following the appropriate rules.

No one in control. As we discussed above, in a naive conception, the TCP
provides an island that extends the controlled computational space of some
remote party. However, note that a large number of the above applications
depend on the fact that, once the computational entity in the TCP is set up,
no one has control over it, not even the parties whose interests are protected.
For example, in the private information server, neither the server operator nor
the remote client should be able to undermine the algorithm; in the auction
case, no party should be able to change or spy on the auction computation;
in the insurance broker case, the insurance provider can provide a premium
calculation algorithm that spits out a number, but should not be able to replace
that with on that prints out the applicant’s answers.

How to build a TCP that allows for this sort of uncontrolled operation—while
also allowing for code update and maintenance—provides many challenging
questions for TCP architecture.

18 TRUSTED COMPUTING PLATFORMS

2.6 The Idealogical Debate
The technology of trusted computing tends to focus on secrecy (“the adver-

sary cannot see inside this box”) and control (“the adversary cannot change what
this box is doing”). Many commercial application scenarios suggested for this
technology tend to identify the end user as the adversary, and hint at perhaps
stopping certain practices—such as freely exchanging downloaded music, or
running a completely open-source platform—that many in our community hold
dear.

Perhaps because of these reasons, the topic of trusted computing has engen
dered an idealogical debate. On the one side, respected researchers such as Ros
Anderson [Anda] and activist groups such as the Electronic Frontier Founda
tion [Sch03b, Sch03a] articulate their view of why this technology is dangerous
researchers on the other side of the issue dispute these claims [Saf02b, Saf02a
for example].

Any treatment of TCPs cannot be complete without acknowledging this de-
bate. In this book, we try to focus more on the history and evolution of the
technology itself, while also occasionally trying show by example that TCP
applications can actually be used to empower individuals against large wielders
of power.

2.7 Further Reading
We’ll consider many of these applications further in Chapter 4, Chapter 9,

and Chapter 11.

Chapter 3

ATTACKS

A key component of trusted computing platforms is that they keep and use se-
crets, despite attempts by an adversary—perhaps with direct physical access—
to extract them.

The broadness of the range of possible attack avenues complicates the task
of addressing them. Contrary to popular folklore, one can sometimes prove
a negative, if the space under consideration has sufficient structure. However,
the space of “arbitrary attack on computing devices” lacks that structure. In the
area of protocol design or even software construction, one can apply a range of
formal techniques to model the device in question, to model the range of ad-
versarial actions, and then to reason about the correctness properties the device
is supposed to provide nonetheless. One can thus obtain at least some assur-
ance that, within the abstraction of the model, the device may resist adversarial
attacks. (Chapter 8 will consider these issues further.)

However, when we move from an abstract notion of computation to its in-
stantiation as a real process in the physical world, things become harder. All
the real-world nuances that the abstraction hid become significant. What is the
boundary of this computational device, in the real world? What are the outputs
that an adversary may observe, and the “inputs” an adversary may manipulate
in order to act on the device?

These answers are hard to articulate, but designing an architecture to defend
against such arbitrary attacks requires an attempt to articulate them. Some
aspects follow directly from the considering the adversary.

What type of access does the adversary have? Can he access the TCP
while it is being shipped? Can he access it while it is dormant? Can
he access it during live operation? If during live operation, how many of

20 TRUSTED COMPUTING PLATFORMS

the operational parameters is the adversary free to choose? Are there any
inherent or imposed limits on the number of adversarial operations?

Is the adversary willing to try destructive analysis? How many units is he
willing to destroy? How significant an advantage will the adversary gain
by compromising few units? (E.g., does a given TCP contain a secret that
would be useful in attacking the rest?)

What tools and resources will the adversary bring to this problem? TCP
designers commonly field such questions. “Could one break this with a $1
million budget?” “Could the NSA break this?” Such analysis can be use-
ful, particularly when gauging how to allocate defense resources, in relation
to the likelihood of the threat and the value of the target being protected.
However, such analysis suffers uncertainty at the extremes. At the top
end, those of us “outside the fence” of classified work can only speculate
about the abilities such agencies have. At the bottom end, such analysis
can suffer from underestimating the effectiveness of low-tech approaches.
The defender must also keep in mind how easy it might be for an initially
difficult attack to be transformed into something easily repeatable. (This
phenomenon—innovative exploit turned into highly reproducible automated
script—characterizes much of the known attack activity in the current In-
ternet.)

Abraham et al [ADDS91] formalized the adversary space into three classes:
clever outsiders, knowledgeable insiders, and funded organizations.

The architecture of the TCP also shapes its attack profile. Specific features
and design choices can create their own adversarial opportunities. We consider
some examples.

If the TCP depends on an external device for resources like power or clock-
ing, then these may become elements for the adversary to manipulate.

Design goals and constraints may lead to a variety of types of memory in
the TCP. For example, the informal model that Chapter 2 presented already
introduced two variations: a protected area that the device either destroys
or otherwise renders unavailable upon attack, and another area to retain
non-sensitive data and code; an adversary cannot modify the latter without
triggering the tamper response on the former. We might see further dis-
tinctions between volatile and non-volatile memory, and between dormant
and run-time memory. Some architectures may even make use of storage
outside the TCP.

Each type of memory raises its own issues. Do the alleged tamper protections
actually work? Is the zeroized memory recoverable? Do run-time memory
and operational registers receive the same protections as protected memory?

Attacks 21

For external memory, are the contents susceptible to analysis or replay?
(That is, can the adversary substitute a valid but outdated version of some
unit?) Do the access patterns reveal any useful information?

Chapter 1 discussed a range of physical packaging for TCPs. These design
choices affect the attack profile. For example, a TCP that leaves computation
and memory exposed (such as TCPA/TCG-based platforms) permits more
attacks than one that puts physical protection around the entire unit. A
single-chip TCP requires different attack and defense techniques than a
larger encapsulated module. A TCP intended to be carried in a user’s pocket
may need to withstand a broader range of environmental conditions, which
may complicate defending against attacks that use extreme conditions.

Thus, considering the potential attacks that a TCP must resist requires sur-
veying an essentially arbitrary space, refined by consideration of the adversary
and the TCP architecture. Where is the perimeter? What can an adversary do?
In this chapter, we’ll approach this problem by surveying some of the attack
avenues that, over the years, have proven fruitful; we will also extract some
TCP design principles from this experience.

Section 3.1 considers physical attacks from outside the TCP. Section 3.2 con-
siders software attacks, particularly if the TCP allows the adversary to insert
code. Section 3.3 considers attacks possible via unforeseen I/O channels, cre-
ated by the physical existence of the computation. Section 3.4 considers poten-
tial attacks due to undocumented functionality in TCP components. Section 3.5
considers the challenges involved in destroying sensitive memory. Section 3.6
considers attacks that emerge when the TCP is integrated into a larger system.
Finally, Section 3.7 considers strategies for defense.

3.1 Physical Attack
In this section, we consider physical attacks from outside the TCP, that seek

to actively penetrate or otherwise disrupt the internal device.
By physically attacking a TCP, the adversary hopes to subvert its security

correctness properties somehow, usually by extracting some secret the TCP was
not supposed to reveal. At first glance, the natural way to achieve this goal is
the direct approach: somehow bypass the TCP’s protections and read the data.
As the following sections will elaborate, this direct approach can often prove
rather successful.

However, a rather sophisticated family of indirect approaches has emerged,
where the adversary instead tries to induce an error into the TCP operation
via some physical failure; if the TCP continues to operate despite the error, it
may end up revealing enough information for the adversary to reconstruct the
secret. Researchers at Bellcore originally described this attack, in a theoretical
context of inducing errors in cryptographic hardware that carried out the CRT

22 TRUSTED COMPUTING PLATFORMS

implementation of RSA [BDL97]. This result generated a flurry of follow-on
results, some of which became known as differential fault analysis (DFA). These
theoretical attacks eventually became practical and demonstrable for
example] and eventually earned the name Bellcore attacks, after the employer
of the authors of the original paper.

In this section, we’ll examine both the direct and indirect approaches. We’ll
consider penetrating devices with no armor (Section 3.1.1), single-chip devices
(Section 3.1.2), and multi-chip devices (Section 3.1.3).

3.1.1 No Armor

Some TCPs make use of computing resources that are not protected by phys-
ical armor. For example, in the TCPA/TCG architecture, the trusted platform
module chip (considered protected against the adversary) uses the rest of the
machine for computation; for another example, sometimes microcontrollers
will use external memory for additional storage, but encrypt the addresses and
data/operands to hide operational details from the adversary.

Clearly, an adversary can tap and inject signals in exposed printed circuit
boards, and often modify the circuits as well. (Indeed, this is how engineers
debug hardware.) Besides such “logic analyzer and Xacto knife” attacks, the
adversary can also make use of features that the hardware itself often provides.
A memory card with dual-ported RAM can permit the adversary to change
memory contents after the TCPA/TCG TPM checks it. Modern computer ar-
chitectures also offer direct memory access (DMA) support that lets a peripheral
work directly with memory, bypassing the CPU. Initially intended to improve
operational efficiency, DMA has also been used to improve security by having a
special peripheral check the main memory for corruption [PFMA04]. However,
an adversary can use malicious DMA to bypass TPM checks.

Encrypting the busses does not necessarily help, due to the relatively small
granularity of the space of instructions. Markus Kuhn [AK96] describes how,
with some inexpensive lab equipment and patience, he was able to system-
atically break the bus encryption protections that the Dallas Semiconductor
DS5002FP employed.

Even on allegedly armored devices, the adversary can sometimes do useful
things by exploiting the unprotected nature of I/O channels. In the early days
of smart-card-enabled telephones, adversaries could obtain free calls by using
masking tape to cover the contact through which the phone debited the card.
More recently, adversaries have installed “man-in-the-middle” keypads over
the real keypads in automatic teller machines, in order to learn user PINs.

Attacks 23

3.1.2 Single Chip Devices
Single-chip devices—particularly smart cards—have received much atten-

tion in the attacker community, perhaps due to the ubiquity of smart cards
in low-end commerce applications (providing motivation), and the low cost
(making experiment and destructive analysis feasible for a larger population).
Anderson and Kuhn’s work here [AK96, AK97] provides an enlightening (and
entertaining) survey of the various techniques they found effective in practice.

Opening, probing, and reverse-engineering a chip has been an ongoing cat-
and-mouse game between the adversary and vendors. Once the adversary opens
a device, he can probe EEPROM state and logic design. Selective alterations
can also prove useful: the adversary can disable future changes to EEPROM
values by destroying the capacitors that provide the EEPROM write voltage;
the adversary can also re-join fused links and put the device back into factory
state; the adversary can use UV light to selectively change EEPROM cells; the
adversary can even make small alterations to chip logic.

The adversary can also manipulate the environment. Deviously abnormal
supply voltages can clear critical critical EEPROM bits or force random number
generators to generate mostly ones. The need for smart cards to tolerate varying
clock rates can enable the adversary to make analysis easier by single-stepping
the card. Appropriately timed and crafted transients in clock rate or supply
voltage can induce a predictable disruption the CPU’s execution of a selected
instruction; the adversary can use this to disrupt control flow—e.g., turning a
secure multi-round cipher into an easily breakable one-round cipher—or to carry
out DFA attacks. Bar-El et al discuss additional environmental
avenues, such as applying low temperatures that affect the correctness of only
some of the operations, and using lasers, X-rays and ion beams to induce errors.
(Bar-El et al also include photographs of of their fault injection equipment.)
Skorobogatov and Anderson recently described how to use camera flash devices
to do fault-injection attacks on single-chip devices [SA03].

3.1.3 Multi-chip Devices
Multi-chip modules provide a different set of attack scenarios, as a larger

device can be self-powered and use stronger materials.
Some early modules used defense techniques such as environmental sensors

that determined when the outer armor was opened up: for example, a mainte-
nance door might have a microswitch, or the internal device might have a light
sensor. Fairly straightforward techniques may defeat these mechanisms: for
example, the adversary may drill a hole in the door, and (through this hole)
apply glue to keep the microswitch closed.

Early secure coprocessor designs suggested wrapping very thin wire around
the module, and then dunking the result in epoxy-like resin. The hypothesis:

24 TRUSTED COMPUTING PLATFORMS

to penetrate the device, the adversary must break the wire—which an on-board
circuit can notice. However, it turned out that patient adversaries with nim-
ble hands could indeed unwind the wire—a strategy that my colleague Steve
Weingart terms the “brain surgery” attack [Wei00]. Other sometimes effective
techniques include machining with water, laser, and sand-blasting. Weingart
also speculates on the use of shaped-charge explosives to create a high-speed
plasma lance that can penetrate a device before defense circuitry can notice;
unfortunately, when we worked together at IBM, he had not been able to find
the appropriate explosives on the open market to try this.

Govindavajhala and Appel at Princeton recently published a novel way to
use physically-induced errors to subvert language-based security mechanisms
in general-purpose computers [GA03]. One way for programmers to produce
system software that avoids common software security flaws (see Section 3.2
below) is to use a type-safe language, such as Java, that does not permit a pro-
gram to store data in some memory object unless their types match. However,
these languages check the type matching at build-time, rather than run-time.
The Princeton researchers wrote a valid Java program that fills memory with
a deviously constructed data structure such that, for a majority of the bits, if
hardware error causes one bit to flip, then the program now has an integer and an
integer-pointer living at the same address. The adversarial program can exploit
this state to arbitrarily re-write memory, within this type-safe program that is
supposed to disallow that.

The Princeton researchers then used heat—a light bulb next to the machine—
to induce such hardware errors.

3.2 Software Attacks

Computing platforms that provide services through computational interfaces—
e.g., function calls, network protocols, etc.—have a long history of permeability.
TCPs are no exception. In the focus to think about physical attacks and defenses,
a designer can easily overlook these software avenues. These susceptibilities
historically fall into several classes; we’ll quickly review them here.

It is important to note that these vulnerabilities appear to be fundamentally
endemic to sufficiently large software systems. (How to build systems that
avoid these risks remains an area of active research.) Without further counter-
measures, a TCP that uses such software modules or depends on a commodity
operating system for protection almost certainly suffers from such weaknesses.
Also, even if the vulnerability occurs between two internal TCP modules–rather
than on the outside, between the TCP and the adversary—it still may be possible
for the adversary to exploit it, if the adversary can figure out how to trick the
calling module to trigger this behavior.

Attacks 25

3.2.1 Buffer Overflow
Computers traditionally store data in a buffer: a consecutive sequence of

memory locations, identified by the address of the “zeroth” location. If a com-
puting device receives input data from a user, it usually copies this data into such
a buffer: byte for byte, starting with this zeroth location. If the data provided is
longer than the buffer—and the system does not notice—then the system may
blindly copy the remainder of the data into memory locations beyond the end
of the buffer.

This buffer overflow overwrites whatever data the system had stored in these
locations. If this location contained data critical to the correct operation of the
system, then an adversarial user now has a chance to subvert correct operation
by providing maliciously crafted, overly long input.

One primary way adversaries exploit buffer overflow is if the buffer lives on
the execution stack. In this case, a sufficiently long input can rewrite the return
address in the stack frame, and thus trick the device into “returning” to code of
the adversary’s own choosing—perhaps even code that the adversary himself
injected, via the input. This style of attack is often called stack smashing. The
victim device executes this code with whatever privileges the device had when
it accepted the input; if a user process exploits a buffer overflow in kernel-level
OS code, the user can execute instructions at kernel privilege.

An adversary can also exploit buffer overflow without rewriting addresses,
if other particularly interesting state variables live in the overwritten area.

Buffer overflow attacks can exhibit considerable subtlety. For example,
return-to-libc attacks can permit an adversary to (essentially) run arbitrary code,
even if the device refuses to execute code that lives on the stack.

In some sense, buffer overflow is a solved problem, in that many software
and hardware techniques have been proposed and prototyped to defend against
it. Nonetheless, the problem remains ubiquitous in the field.

3.2.2 Unexpected Input
When a designer programs a system to accept and process input, he or she

does this in the context of a particular operational sequence the system is carry-
ing out, and in the context of a particular type of response the system should be
expecting at this point. However, the input provided might essentially be any
arbitrary byte string, not necessarily of the expected type (e.g., a pair of positive
integers), nor of a legal element of that type (e.g., a valid account number, and
a value of cash, not more than the account’s current balance).

Designers tend to focus efforts on building the system so it works correctly if
the user provides correct input for the context: legal data, of the legal types. This
focus can lead the designer to overlook what may happen if the user provides

26 TRUSTED COMPUTING PLATFORMS

input that does not meet these expectations; if such input can take the system
into usefully corrupt states, an adversarial user can use this avenue to attack.

The standard defense against such attacks is argument validation: having
each receiver of user input check that the input is valid for this context before
acting on it. Nonetheless, it can be difficult to do this correctly for all cases,
given the rush of commercial software production, the difficulty of formally
specifying “correct” input, and the current lack of ubiquitous language support
for validation.

Example: IBM 4758 Code-load Requests. In the IBM 4758 TCP, we per-
mitted an external user to request that the device load a user-provided block of
executable code into a certain FLASH sector. Should this request be properly
authorized, the device would carry it out.

While it is pending, this code-load request lives in operational DRAM within
the TCP; this DRAM also houses some critical device secrets. In our protection
model, the TCP destroys this data upon tamper, but leaves the FLASH contents
available to an adversary. To avoid buffer overflow risks, we checked that
the command the user provided fit within the DRAM buffer we had allocated,
before the TCP brought the command in. In order to accommodate a com-
plex command structure with several varying-length items, we structured the
command with an index area, with a pair of integers—for “offset” and “length,”
respectively—for each field. This pair indicated where the field could be found:
“offset” indicated how many bytes away it was from the command area.

However, a devious adversary (who was authorized to provide a low-privileged
code load for that TCP) could have constructed a command where the “code”
offset sent the TCP out of the command buffer, all the way to the part of DRAM
where the critical platform secrets lived. The consequence would have been
that the TCP would dutifully copy the secrets into FLASH, where they would
be available after physical penetration.

Even though the input was structured correctly and fit within the buffer, it
was illegal: the user could reach beyond his or her confines, with input that did
not satisfy validity constraints.

(We avoided this problem, by carefully testing that all such offsets lived
within the input buffer, which had been cleared before bringing the input in.)

3.2.3 Interpretation Mismatches
Another common software vulnerability occurs when a system uses two

different ways of mapping some sequence of bytes to its semantic meaning.
Suppose module interprets user-provided data D as but module

uses some different If the designer does not take this difference into
account, the adversary might be able to provide data D where

Attacks 27

and the modules would the carry out inconsistent actions, taking the system into
an insecure state.

Such flaws commonly occur when systems process user-provided charac-
ter strings, but different system modules use different interpretations of what
character sequence denotes the end of the string.

For example, in order to ensure that external clients could only see html
files, the eXtropia WebStore used a CGI script to check that a requested URL
terminated in the string “html” before passing the request to the underlying OS.
The script interpreted the NULL byte (0x00) as a valid character, but the OS
interpreted it as the end of the string; consequently, an adversarial user could
obtain any file, simply by appending a NULL byte and “html” to its name.

Because such interpretation mismatches commonly occur because of im-
proper handling of such “escape” characters, this family is often called escape
sequence flaws.

3.2.4 Time-of-check vs Time-of-use
Security systems already have an implicit notion of correctness predicates for

actions. The system should not carry out a requested action unless the system’s
security policy permits that action, by that user, in that particular system state.
The software processing these requests typically check that these conditions are
satisfied. As the above discussions showed, security software may have many
other correctness conditions that also need to be checked, if we’re going to keep
the system from entering an incorrect (and insecure) state.

However, the checks and the actions resulting from these checks do not
typically take place in the same instant. Duration can exist between the check
and the action. Duration can also exist in the action itself; sometimes, the check
can be sufficiently complex that duration exists throughout the check. Such
duration introduces the possibility of error and, perhaps, attack: the predicate
may have been true when the system checked it, but may have ceased to be true
when the system acted on the results. The check itself may have been based
on assumptions and bindings that ceased to hold during the check process. The
term time-of-check/time-of-use (TOCTOU) denotes this family of flaws.

Example: Hamlet. For a literary example, consider the fate of Rosencrantz
and Guildenstern. To kill Hamlet, the King authorized the death of the bearer
of a letter given to Hamlet; however, between the authorization and the action,
the binding between “bearer of letter” and “Hamlet” ceased to hold.

Example: CP/Q++ Crypto Services. In the IBM 4758 TCP configured with
the CP/Q++ operating system, the OS provides a suite of services to user-
level processes. These services include requests for cryptographic services
and for retrieval of sensitive data. The security modules within CP/Q++ used

28 TRUSTED COMPUTING PLATFORMS

the message-passing paradigm (native to the CP/Q kernel) to implement these
services, which typically took duration to carry out. The CP/Q kernel used a
process identifier to indicate message recipients. The security modules checked
that the caller was authorized, but embodied the results of this check as the
process identifier, to which the response should be directed. However, between
the check and the completion of the request, the caller may have terminated, and
the kernel may have re-used its identifier for a new process—which receives a
result message potentially containing data is not authorized to see.

We addressed the problem by putting all user-level processes into the same
security domain.

3.2.5 Atomicity
A more direct consequence of duration can be a lack of atomicity. Suppose

a TCP action takes non-trivial duration; rather than transitioning instantly from
state A to state B , the TCP proceeds through a sequence of intermediate states

If the adversary has the ability to interrupt the action (e.g., by removing
power from a TCP that requires its outside environment to provide power), then
the adversary may be able to cause the TCP to stop in one of these intermediate
states If the designer did not anticipate this attack, resuming operation in
state may put the TCP into an insecure state.

For example, consider the action of erasing and rewriting a FLASH sector
(see Section 3.4.2). Between the start and finish of this action, the contents of
the sector are indeterminate; if the adversary can arrange the interruption to be
after the sector has been erased but before the rewrite starts, the contents will
be a known (erased) state. If the TCP stored critical data here and had no other
non-volatile memory, then adversarial interruption could leave this data in an
illegal state.

More traditional systems—such as databases and distributed transaction
systems—have well-developed theories of atomicity and techniques to achieve
it: to ensure that as far anyone can observe, actions either fail completely (the
system remains in state A) or succeed completely (the system transitions to
B). However, these techniques do not always easily adopt to some TCP archi-
tectures, where some actions may not be easily rolled back, and stable storage
itself does not necessarily have atomicity.

Example: Gemplus Audit. Bar-El et al discuss an EEPROM
atomicity attack that Gemplus discovered in one of their DES smart cards in
1994. The adversary would like to learn the card’s secret key First, the
adversary asks the card to encrypt a value, so the adversary has a plaintext-
ciphertext pair At that time, brute-force search of the full 56-bit DES
keyspace was considered infeasible.

Attacks 29

However, the adversary could initiate an erase of the EEPROM that contained
the key but remove power after the EEPROM erased just the first block. Since
the EEPROM had a block granularity of 32 bits, this interruption left the card
with half the key bits reset to zero. The adversary then requests a second
encryption, getting a pair: encrypted with a key consisting of 28 bits
from and 28 zeros, in known places. The adversary does a brute-force
search to learn then uses these bits to do another brute-force search to
learn the rest Lack of atomicity in the EEPROM erase operation reduced
an infeasible search to a feasible

3.2.6 Design Flaws

These standard families of flaws can be highly effective in subverting security.
This effectiveness tempts an analyst to look for such exploits when evaluating
a system’s security. However, as a consequence of focusing on how the system
might incorrectly implement its interfaces, the analyst can overlook flaws that
result from simply using the system’s advertised functionality in unexpected
ways. Software systems—and TCPs are no exception—can suffer from design
flaws.

In recent years, researchers such as Mike Bond and Ross Anderson at Cam-
bridge [BA01] have focused attention on the API level of these devices. Besides
physical properties, instantiation of abstract ideas in the real world also can lead
to feature creep. As Mike Bond paraphrases Needham, clean abstract designs
tend to become “Swiss Army knives.” In particular, cryptographic accelerators
have found major commercial application in banking networks: for ATM and
credit card processing, devices need to transmit, encode, and verify PINs. How-
ever, the accumulation of usage scenarios leads to a transaction set complexity
that permits many clever ways to piece together program calls that disclose sen-
sitive PINs and keys. Jolyon Clulow [Clu03] (formerly of Prism, but now also
at Cambridge) has discovered many amusing attacks possible from exploiting
error behavior resulting from devious modifications of legitimate transaction
requests.

Besides feature creep, one conjectures that another source of these vulnera-
bilities is the inevitable complexity of software evolution paths in commercial
projects. Projects split into branches, for different customer bases or contexts;
these branches evolve separately; these branches then merge as a new variation
tries to accommodate these various legacy uses. These mergers of different
APIs can cause trouble: each alone might keep the system in a secure state,
but their union can reach dangerous states, because one’s specializations were
never considered in the context of the other’s.

30 TRUSTED COMPUTING PLATFORMS

3.3 Side-channel Analysis
Section 3.2 considered attack avenues that TCPs inherit by being, in part,

software. These computing platforms are also physical. The physical action of
computation can often result in physical effects an adversary can observe; these
observations can sometimes betray sensitive internal data the TCP architecture
was supposed to protect.

This style attack of is often called side-channel analysis, since the TCP leaks
information via channels other than its main intended interfaces. In this section,
we discuss these attacks.

Section 3.3.1 discusses extracting information from the time computation
takes.

Section 3.3.2 discusses extracting information from power consumption;
and

Section 3.3.3 discusses some other avenues that have proved fruitful.

According to rumors, the U.S. Government’s classified TEMPESTproject has
developed an extensive suite of knowledge and defenses in this vein. However,
almost by definition, details of classified projects can be difficult to confirm,
although some details have begun to be released (see http://cryptome.org/
nsa-tempest.htm, or Chapter 10 in [RG91]).

3.3.1 Timing Attacks
Computation takes time: the CPU needs to fetch instructions and data; on a

finer-grained level, gates must switch and wires must carry signals. The exact
combination and sequence of actions and signals depends on the operational
data, and the duration depends on this combination. But if the actions depends
on secret data, the duration can betray this information.

Example: TENEX. For a classic example of this approach, let’s look back to
password checking in the Tenex operating system, an early 1970s timesharing
system for the PDP-10. Naively, the number of attempts necessary for an
adversary to guess a secret password is exponential to the password’s length.
(E.g., for an 8-character password chosen over an alphabet of size N , it may
take as many as guesses.)

However, Tenex made it much easier for the adversary because it checked a
guess one character at time, and stopped at the first mismatch. By lining up a
guess across the boundary between a resident page and a nonresident page and
observing whether a page fault occurred when the system checked the guess,
an adversary could verify whether a specific prefix of a guess was correct. For
example, the adversary could begin by making a random guess as to what the

Attacks 31

password might be—but line this guess up along a page boundary so only the
first character is in a resident page. If the system page-faults before rejecting
the password, then the adversary knows that the first character in the guess was
correct. Thus, it takes at most N guesses to get the first character, then N for the
second, and so on, giving 8N in all—which is much better (for the adversary)
than

The fact that the secret password comparison occurred on a real machine led
to an observable property that turned an intractable exponential search into a
feasible linear one.

Example: RSA. If we fast forward to 1995, the same basic problem—an
observable artifact lets an adversary verify the prefix of a guess—emerged for
more abstract cryptographic devices.

For example, consider a TCP that carries out modular exponentiation with a
secret exponent, as part of the the RSA cryptosystem. The time that the mod-
ular operation takes depends on the operand x, the modulus public
N , and the secret exponent d; the operation and its standard implementation
are well-understood by the community, including the adversary. Suppose the
adversary can measure the time the TCP takes for some known x and N , and
guesses a value g that might be the n-bit secret exponent d. The adversary can
then calculate a prediction for the time the TCP should take for this operation,
were the guess g the correct exponent. If only the k most-significant bits of the
guess were correct, then the adversary’s prediction model would be correct for
these first k bits, but wrong for the remainder. Furthermore, the cryptographic
operations involved essentially randomize the data the adversary’s model will
use for these remaining bits—so the timing components these bits introduce
look more or less like statistically random variables.

For a given guess g, over enough samples x, the difference between predicted
and real times would then form a statistical distribution with variance propor-
tional to n - k. As a consequence, the adversary could confirm the correctness
of a guessed k-bit prefix of the secret by running enough samples, measuring
these differences, and calculating the variance. With enough samples, this ar-
tifact of the physical implementation of RSA (and other cryptosystems) turns
an infeasible exponential search into a feasible linear one. Instantiating the
cryptography in the real world leads to threats that do not always show up on a
programmer’s white board.

One defense approach is to make the operational parameters independent
of the input data. The feasibility of this approach depends on the operation.
For example, in RSA, one can use random data to conduct a blinding transfor-
mation on the parameters before the operation, and then a reverse unblinding
transformation afterwards. However, carrying out this approach on a TCP that

32 TRUSTED COMPUTING PLATFORMS

does not have a good source of randomness—or a good way to obtain a seed
and store a context of pseudorandomness—can be tricky.

An easier defense approach—and one that newer-generation modular expo-
nentiation and RSA engines started to incorporate—is to design the hardware to
take constant time for each operation, no matter what the data was. When Paul
Kocher first published his timing attacks in 1995, at least one old-timer claimed
that a few older commercial accelerators also took constant time, indicating
that some in the commercial world must have already known about the attack.

Reproducing the RSA timing attack has made an excellent homework project
here at Dartmouth.

Example: Apache SSL Web Servers. In the classic instantiation of crypto-
graphic timing attacks, the adversary has direct access to a TCP carrying out
RSA, and the TCP uses some variation of the standard multiply-and-square im-
plementation of the modular exponentiation step. However, in 2003, researchers
from Stanford demonstrated that the adversary can even carry out such attacks
from the other side of the network, against platforms—such as Apache with
mod_SSL—that use much more sophisticated implementations [BB03]. All it
requires is sufficiently many samples to overcome the noise the distance intro-
duces, and sufficient cleverness in teasing apart the implementation details.

Example: Web Caches. Researchers at Princeton discovered another amus-
ing example of timing attacks. When Alice visits Bob’s Web site, her browser
directs her machine to load and render the various elements that Bob’s page
specifies—except the browser first looks in Alice’s local caches, since retriev-
ing an object from there is quicker than retrieving it from a remote server. If
an adversary can get Alice to visit a Web page that loads an element specific to
Bob’s page—and also times how long it takes for Alice’s browser to do this—
then the adversary can learn whether Alice has visited Bob’s site recently.

Reproducing this cache-timing attack has also made an excellent homework1

project.

Example: University Passwords. Here at Dartmouth, a university-wide name-
and-password system handles authentication for mail, and for other services
such as registering for classes, checking grades, and (for faculty and staff)
accessing student records. To avoid sending passwords in plaintext, the au-
thentication system adopted the “Random Number Exchange” technique from
AppleShare: the client concatenates the ASCII encoding of the characters in
the user’s password to form a DES key, and then uses this key to encrypt an

1 My forthcoming Educause Quarterly essay expands on carrying out fun security attacks as part of homework
assignments [Smi04],

Attacks 33

eight-byte random challenge from the server. (If the password is shorter than
eight characters, the client pads it with zero-filled bytes.)

While exploring password hacking, we noticed that, on the wireless network,
we could observe the campus authentication server send a random challenge to a
nearby user’s client, and then observe the client respond. We further noticed that
the duration of the DES operation was proportional to the password length (per-
haps because of the zero-filled bytes—this bears further investigation). Thus,
by timing this interval, we could determine which users had passwords short
enough for a quick brute-force search; by recording the challenge-response pair
for such users, we could carry out that search.

However, since the only users on campus with short passwords were high-
level faculty and administrators who chose their passwords before the length
limit was in place (and who have resisted pleas to choose new passwords), we
decided against pursuing this experiment further.

3.3.2 Power Attacks
In addition to the time-of-operation operation approach, physical devices

have other observable physical characteristics that depend on hidden secrets.
One natural characteristic is power. When complementary metal-oxide semi-
conductors switch, they consume power; an adversary could measure this con-
sumption and attempt to deduce things about the operation.

SPA. With simple power analysis (SPA), an adversary tries to draw conclusions
from simple power traces. With sufficient knowledge of what the device does,
the adversary can identify a particular point in the sequence where what the
device does (and the power it consumes) will differ depending on what the
hidden data is. Even with insufficient knowledge of the device architecture (or
the operational parameters), the adversary can often still achieve results with
a bit of experimentation. On the other hand, once the designer recognizes this
attack avenue, defense can be fairly straightforward: as with timing defenses,
the designer de-correlates the operational parameters from the secrets.

Example: a Lost Bet. SPA can be quite effective. Two co-workers of mine
made a bet on how many power traces would be necessary to extract a DES
key from a certain commercial smart card. The winner managed to do it with
a single power trace: an initial parity check led to a mix of spikes, some short,
some tall, one for each bit in the key.

DPA. More advanced differential power analysis (DPA) looks at subtle statis-
tical correlations between the secret bits and power consumption.

In its classic instantiation, the adversary collects a large set of trace-
ciphertext pairs. The adversary also picks a selection function D that takes a

34 TRUSTED COMPUTING PLATFORMS

ciphertext and a guess of part of the key and outputs one bit. The idea is
that if the guess is right, this bit reflects something that actually shows up in
the computation, but if the guess is wrong, then D will be random across the
ciphertexts.

The adversary then makes a guess and uses this guess and the selection
function to partition the set of traces into two sets: the for which

 and the for which He averages the traces in each set, and
then looks at the difference between these average traces. If was wrong,
these two sets are uncorrelated, and the differential trace becomes flat as the
sample size increases. However, if was right, the differential approaches
the correlation of D and power consumption, which will be spiky.

Defenses against differential power analysis are difficult, since they essen-
tially only reduce the signal the adversary is reading, rather than eliminate it.

3.3.3 Other Avenues
When Kocher first announced his timing attacks, a senior colleague of mine

harrumphed and suggested many other physical avenues—including power,
electromagnetic radiation, and heat—by which a TCP could leak information.
Most of the avenues he suggested—and several he did not even imagine—have
turned out to be feasible. (The sole exception: the conventional wisdom to date
is that heat analysis is not effective [QS02].)

Electromagnetic. As electrical devices, the components of a computer gen-
erate electromagnetic radiation as part of their operation. An adversary that
can observe these emanations and can understand their causal relationship to
the underlying computation and data may be able to infer a surprising amount
of information about this computation and data. This ability can be devastat-
ing, should the computer be a TCP intended to keep this information from the
adversary.

Defense against side-channel analysis via electromagnetic radiation is re-
puted to be the center of the classified world’s TEMPEST project; one source
dates this from the 1950s [RG91]. Knowledge of this attack avenue grew slowly
in the public domain. According to one account [Hig86], a 1967 conference pre-
sentation was the first public disclosure; a 1983 document (Läkande Datorer)
published in Swedish also discussed it. The breakthrough public publication
was van Eck’s 1985 paper [van85], discussing (and demonstrating) the ease of
detecting the electromagnetic radiation from a CRT monitor and reconstructing
what the monitor displayed—even from a distance of several hundred meters.

Kuhn and Anderson later followed up this work with soft tempest [KA98].
If the adversary can also send software to the target machine, he can craft
software that deliberately enhances the signal strength in this side channel —
and then uses this channel to transmit interesting data harvested from the victim.

Attacks 35

Alternatively, a TCP designer can incorporate specially crafted Tempest fonts
in what the CRT displays, to greatly reduce what a remote adversary can learn.
In recent years, Kuhn has demonstrated [Kuhar] that modern flat-panel displays
can also be vulnerable to this type of attack, and suggests using randomness in
the bitmap each time a character is displayed.

In the above EM schemes, the adversary exploited the relatively strong
signals generated by the CRT. Internal computational logic also generates
signals, albeit more subtle ones. In follow-on to power analysis work, re-
searchers [QS01, AARR, for example] demonstrated that similar techniques
based on EM can also extract secrets from commercial devices such as chip
cards and cryptographic accelerators. More recently, researchers have also ex-
amined the potential for using multiple side-channels simultaneously [ARR03].

Visible Light. Computing devices use light to communicate information to
human users: think of a CRT monitor, or even status LEDs on modems and
network ports. These devices directly communicate information via line of
sight; however, their signals also indirectly affect things like diffuse reflection
off of background objects. Markus Kuhn demonstrated [Kuh02]—via both
sophisticated analysis as well as direct experiment—that the average luminosity
of a CRT’s diffuse reflection off of a wall can sufficient to reconstruct the
signal displayed on the CRT (so shielding the CRT to protect against leaking
information via electromagnetic radiation may not be sufficient). Kuhn also
speculates that the same techniques can apply to LED signals. Even without
line of sight, the adversary may be able to read the signals that a TCP’s optical
output channels emit.

Acoustic. Very recently, researchers [ST04] have demonstrated a preliminary
proof-of-concept that a correlation exists between the sound of a processor and
its computation.

3.4 Undocumented Functionality
TCPs, like other computing devices, are typically assembled from commod-

ity components, such as ICs containing fairly complex semiconductor circuits.
Like other complex systems, these devices offer a rich array of services, which
the rest of the TCP may access via the component’s external interface. This
interface typically has a well-defined specification describing what services the
component offers, and exactly how the interface should be manipulated to in-
voke these services. Designers turn this specification into a mental model that
guides how they integrate the component into the broader TCP design.

However, like any other complex system, this model may diverge from reality.
The component may have behavior that explicitly diverges from the documented
specification; the component may also offer additional functionality that can

36 TRUSTED COMPUTING PLATFORMS

be accessed via interface methods that do not appear in the specification. For
example, a microprocessor executes its instructions by decoding the opcode,
and then carrying out the specific operations required by the instruction this op-
code represents. In random logic implementations, the microprocessor carries
out this decoding by a web of logic gates—but, as a consequence, one might
find that opcodes that do not represent valid instructions still cause the micro-
processor to do something interesting and perhaps useful. In the early days of
microprocessors, we hobbyists excitedly exchanged folklore about things such
as undocumented instructions for certain vendors’ 6502 chips. (“You can load
two registers simultaneously!”)

Under some circumstances, the adversary may be able to turn such diver-
gences into attack avenues. This can occur when the divergence is relevant to
the TCP’s enforcement of its security properties, and when the adversary can
cause (or wait for) the TCP to take this internal component into that behavior
space.

Let’s consider some real examples.

3.4.1 Example: Microcontroller Memory
A microcontroller is a small, single-chip computer—processor, RAM, code

space, EEPROM non-volatile storage. In the IBM 4758, we used a particular
vendor’s microcontroller as part of our larger multi-chip physically encapsu-
lated TCP. The microcontroller behavior the TCP accessed included asking the
microcontroller to write critical values to its internal EEPROM. Among the
behaviors an external TCP user (including the adversary) accessed included
resetting the entire platform by interrupting power, and resetting the entire plat-
form simply by leaving the device powered up but triggering the reset hardware
line.

One might wonder what would happen should one of these TCP reset triggers
occur while the internal microcontroller is carrying out a write to its EEPROM.
For example, suppose the microcontroller was trying to store value 0x23 to
address 0x1F, which currently stored value 0xA6. The natural mental model
(and the one the documentation suggested) would imply that the EEPROM
would be in one of two states:

The write succeeds: address 0x1F now stores value 0x23.

The write fails: address 0x1F still contains value 0xA6.

Paranoid designers might even suspect a third possible state:

The write partially succeeds: address 0x1F now contains some unknown
value (because the EEPROM was being changed while reset happened).

One naturally assumes that, in any of these cases, the remainder of EEPROM
would be unchanged.

Attacks 37

However, while doing some exploratory testing, one of our engineers tried a
power-preserving platform reset during a microcontroller EEPROM write, and
discovered that what actually happened was something unexpected:

The write succeeds, but only after the destination address is reset to 0x00.
Consequently, the EEPROM now has overwritten address 0x00 with 0x23.

The engineer contacted the vendor, who knew about this flaw but had neglected
to document it. Until this point, we had been storing some critical flags in
EEPROM location 0x00. Causing that location to be rewritten with an arbi-
trary value might have greatly benefited an adversary; for example, it might
have convinced the TCP to turn back to “factory mode” with greatly reduced
protections.

3.4.2 Example: FLASH Memory
FLASH is a type of non-volatile semiconductor memory, typically packaged

in a single chip. In ordinary read mode, it appears to the rest of the system
as typical ROM: the system uses the chip’s address lines to specify a memory
location, and then uses the chip’s data lines to read the value stored there.

Changing the stored values is a more complicated operation: the system must
first erase the memory (e.g., resetting the bits to zero), then put the memory
into write mode, then write the values, then put it back into read mode. Each of
these operations takes non-trivial duration; some programmers try to streamline
things by using careful data structures that reduce the need for erase operations.
FLASH chips typically partition their memory into large sectors that can be
erased separately. To allow a single chip to provide some ROM storage as well
as rewritable storage, chips frequently provide a way to make sectors read-only
by board-level signals, such as grounding a particular pin on the IC.

Putting a FLASH chip into erase or write mode thus requires telling the
chip to change modes, and telling it which sector to operate on. Typically, the
interface permits this by having the system send a special sequence of “write”
operations to a magic series of addresses. Consequently, the chip needs some
decoding logic on its input lines, to recognize and process the “opcodes” that
these sequences represent. The existence of this logic creates the potential
for the existence, by accident or by design, for opcodes that carry out other,
undocumented operations.

For example, a colleague2 reported discovering FLASH chips with an undoc-
umented operation sequence that would enable the system to erase and rewrite
a sector that was supposed to have been hardwired as ROM. He conjectured
that the vendor provided this feature deliberately, as a service to customers who
discovered, after installing the devices, they needed to change the ROM code.

2It gives me great pleasure to note that this colleague’s last name was “Hack.” I kid you not!

38 TRUSTED COMPUTING PLATFORMS

However, a TCP designer may very well use ROM protection on FLASH
sectors as part of the security protections—for example, if the TCP permits
external users to provide code that runs in some protected way, the designer
may trust the ROM protections to preserve boot-block code from adversarial
modification. If the adversarial code has write access to other sectors on that
FLASH chip, then (without further countermeasures) the adversary could use
such an undocumented feature to defeat the TCP security.

3.4.3 Example: CPU Privileges
In contemporary computer architecture, CPUs operate in one of a number of

privilege modes. Internal hardware restricts certain operations to higher privi-
lege levels. Typically, these privileges form the foundation for how an operating
system protects itself from user processes, and protects user processes from each
other: the CPU provides high-privileged kernel mode and low-privileged user
mode; to execute sensitive OS operations, the CPU must be in kernel mode;
switching from user-mode to kernel-mode requires a special hardware trap that
also changes execution context to the OS.

Suppose users (including the adversary) can run code in user-mode, and
the designers count on the kernel-user system architecture to ensure this code
cannot do significant harm. If the adversary can figure out how to cause the CPU
to change modes while still executing the adversary’s code, then the adversary
defeats these protections.

The literature gives us two examples of how, as an unexpected consequence
of seemingly innocuous user-level operations, an adversary can do just that. In
1972-1973, as part of a security review of the MULTICS operating system, Paul
Karger and Roger Schell discovered that certain carefully laid out instructions
on a Honeywell 645 CPU would bypass the memory restrictions set up in kernel
mode [KS74, Section 3.2.2]. In 1991, a vulnerability surfaced in Sun SPARCs:
an integer division bug could give any user “root” privileges [Neu95, page 116].
It is not clear whether the bug lay in the OS, the hardware, or a combination of
the two: however, a software patch fixes it [Sun91].

One wonders at such incidents. Were these design accidents, or deliberate
sabotage? Given the difficulty of testing for such features, what can we speculate
about the number of other such occurrences in the wild? Does the increased
complexity of current CPUs increase the likelihood of such features? How
much does the increased sophistication of design verification tools mitigate this
risk?

3.5 Erasing Data
When considering memory components, a designer tends to focus on how

well these components remember data, and overlook the question of how well

Attacks 39

the components forget it. For a TCP, this question plays into at least two sets
of issues:

the TCP may use memory that an adversary may later use, and thus should
zeroize its contents when done;

the TCP may defend itself by zeroizing sensitive memory upon tamper.

Peter Gutmann published excellent analyses of how data can imprint into
magnetic [Gut96] and semiconductor [Gut01] storage. Anderson and Kuhn
[AK97] empirically confirmed that most of the key material still remained in
an early “secure” cryptographic accelerator even after it had zeroized itself.

My colleague Weingart has experience using radiation and low temperatures
to cause CMOS RAM to imprint its contents [Wei00]; as Anderson and Kuhn
also observed, an adversary might successfully attack a device that zeroizes
itself upon tamper simply by first immersing it in liquid nitrogen. (Here at
Dartmouth, where outside temperatures regularly go below – 10°F in winter,
simply leaving the TCP outside for a while may suffice.) Unfortunately, such
imprinting data—how long, at what temperature—does not often appear on a
device’s spec sheet. Voltage spikes are also reputed to cause imprinting.

On the software level, coding to avoid leaving sensitive data in exposed
memory is a tricky and often subtle business. Simply having a routine clear
its memory before exiting may not suffice, because the compiler may notice
that these write operations are never read—and so optimize them away. The
operating system may add also act in ways the programmer does not anticipate.
For one example, in one embedded OS, a process could explicitly request to
share a memory region with another—but the OS will actually share the entire
memory page that region contains. For another example, one need only think
of what happens to the stack and to the contents of free page frames and free
disk sectors, and of deleted data inside a journaling file system.

3.6 System Context
Analyzing a platform for security issues naturally requires focusing on the

platform itself. Unfortunately, this focus can sometimes obscure the fact that
the platform may only make sense in the context of a larger system for building,
deploying, maintaining, and using it. This larger system may contain avenues
for an adversary to subvert the platform, without directly attacking the platform.

Example: Software Support for a Secure Coprocessor. Consider a secure
coprocessor such as the IBM 4758: significant physical armor, but whose secu-
rity depends on internal bootstrap and control software, installed and maintained
by a privileged entity. At first glance, one focuses on the physical armor; at
second glance, one may focus on the software design, its embodiment as source

40 TRUSTED COMPUTING PLATFORMS

code, and perhaps even its embodiment as the actual executable that runs on
the device.

However, the fact that the device may accept signed code updates from
the privileged entity brings in a new dimension. What software engineering
practices govern the codebase? Is there a good version control system to keep
fixed bugs from reappearing? Will changes in the compiler or linking tools
affect things? What security practices govern the protection of the private key
that signs these updates?

Example: University Smart Cards. For another example, a colleague of
mine works at a university where student IDs are chip cards, and students can
use these cards to purchase items from vending machines, via a balance stored
on the card itself. (The machines also take real money.)

Curious, my colleague’s lab built a man-in-the-middle: the chip card plugs
in one end, the other end (some plastic, with conductive foil strips emulating
the card contacts) plugs into the vending machine, and a handheld computer
observes the traffic. Reverse-engineering the card-machine protocol from these
observations, these researchers discovered that the card authenticated the vend-
ing machine, but not the other way around. (This discovery enabled them to
build a handheld-driven simulated card that successfully convinces vending
machines to release products.) Furthermore, they discovered that their lab’s
soft drink vending machine (everything is a same price—let’s say $1) would
deduct a dollar from the chip card as soon as it was inserted—but then would
return the dollar if a purchase was not carried out. When they programmed
their simulated card to refuse to accept this dollar back, they discovered that the
vending machine—insistent on carrying out its duty—would eject four quarters
instead.

Consequently, without directly attacking physical security of the system com-
ponents (vending machines and chip cards), my colleague was still able to reg-
ularly drain his lab’s vending machine both of soft drinks and of quarters—and
since the party who handled vending machine products differed from the party
who collected/replenished vending machine money, no one ever noticed.

Example: University Stored Value Cards. Another colleague tells of his
undergraduate university, where students used stored-value cards to purchase
photocopies (from photocopy machines) and soft drinks (from vending ma-
chines). The photocopy machines offered two different options, priced at (let’s
say) ten cents and 25 cents. The machines were clever enough to check that card
had sufficient stored value for the selected option, when the student inserted the
card. However, the machines were not clever enough to check that this value
was still sufficient should the student change the selection to the more expensive

Attacks 41

option after the card was inserted. The machine would attempt to debit 25 cents
from a card that contained less, leaving an illegal value stored on the card.

A card in this error state would not subsequently work in a photocopier. It
would also not work in a vending machine. However, the vending machine
computation did not correctly validate its input; it would try to work with this
illegal value anyway. As a consequence, the vending machine would crash
(requiring in-person maintenance by appropriate personnel)—but not before
writing a legal and significantly large positive value onto the student’s card.

As a consequence of this (apparently unforeseen) interaction between three
different devices and legal but not necessarily sensible behavior by users, the
university regularly found itself in a state where half the vending machines were
crashed, the other half were drained of product, and the soft drink supplier was
demanding payment.

3.7 Defensive Strategy
Unlike many other researchers in the physical security arena (who focus on

attacking systems), Steve Weingart has spent the bulk of his career working
on how to build TCPs that can withstand attacks (and then applying this to
the physical security architecture of the IBM 4758). The last in the world to
claim that a system could be “tamper-proof,” Weingart has identified several
components that a designer can weave together into a defensive strategy.

3.7.1 Tamper Evidence
The designer can try to ensure that physical attack on a device results in

some indelible, observable consequence. Everyday examples include the glass
covering on some fire alarms, or the safety-seal on a new bottle of aspirin: the
intention is not so much to make tamper difficult as it is to make it obvious to
a legitimate user or auditor that tamper has occurred.

Of course, using tamper evidence does not make sense an applications where
an appropriate party will not be able to audit the device, or where an after-the-
fact observation is too late.

3.7.2 Tamper Resistance
Another technique is to make the device hard to attack physically. A real-

world example might be the armor on a bank’s safe: the adversary who wants to
penetrate this is going to have to obtain significantly powerful tools, and bring
them with him to the bank.

3.7.3 Tamper Detection
The designer can include measures to enable the device itself to sense when

tamper is occurring. A real-world analogy is a burglar alarm: the adversary

42 TRUSTED COMPUTING PLATFORMS

may be able to break into the house, but will hopefully end up setting off a
motion sensor the homeowner installed.

3.7.4 Tamper Response
Finally, the designer can include measures to enable the device to take some

appropriate countermeasure when it detects tamper. Again, in a real-world
analogy, a burglar alarm is not effective if detects the burglar, but then rings a
very quiet alarm that fails to bring help. In TCP design, tamper response often
takes the form of trying to zeroize sensitive data before the adversary can reach
it.

3.7.5 Operating Envelope
Our college recently announced migration of our telephone service from

traditional lines to voice-over-IP—prompting some wags to ask how one can
call the machine room to tell them the network is down.

More seriously, the technology that comprises defense mechanisms itself
may require various preconditions and environmental factors to operate cor-
rectly. A burglar alarm may require power; tamper response consisting of
having the CPU overwrite data requires a functioning CPU for a sufficiently
interval; tamper response that focuses on zeroizing SRAM requires the appro-
priate temperature range in order to avoid imprinting. The designer needs to
identify the operating envelope—the region within which the device needs to
remain for its defense mechanisms to operate correctly—and ensure that the
device remains within this region. Applying this principle may require trying to
estimate the device’s fastest trajectory out of this envelope—and ensuring that
the device can successfully complete its defensive countermeasures in time.

3.8 Further Reading
Ross Anderson and his group at Cambridge University have long been lead-

ers in the role physical attacks can play in defeating security architectures. The
two Anderson and Kuhn papers mentioned earlier [AK96, AK97] make good
reading; Ross’s textbook [And01] is also worth a look. Weingart’s 2000 pa-
per [Wei00] provides a nice overview of these defense ideas, along with attack
avenues. Paul Kocher and his group at Cryptography Research have long been
leaders in side-channel analysis [Koc96, KJJ99, for example].

My “Fairy Dust” column [Smi03] in IEEE Security and Privacy provides a
short survey of these attack issues (and some defense strategies).

Chapter 4

FOUNDATIONS

The bulk of this book focuses on the design and applications of the IBM 4758
secure coprocessor and subsequent TCPA/TCG platforms. However, there are
no branches without roots. In this chapter, we’ll examine some of the principal
ancestors that set the stage for these technologies

Organizing this discussion gives us several choices: we can present things
chronologically, or by investigators, or by concept. None of these approaches
is “clean,” since the concepts are interrelated, and the various projects over time
explored various combinations. We’ll organize by concept

Section 4.1 will look at early examinations of applications secure coproces-
sors, and how they might be integrated in into broader systems.

Section 4.2 will look at early examinations of physical security and internal
architecture for commercially reproducible platforms.

Section 4.3 will look at using hardware to insure a larger platform boots
securely.

Section 4.4 will look at some relevant projects in the classified/defense
world.

4.1 Applications and Integration
If we take as axiomatic that we have some physical protection technology

that renders its internal data unavailable to a targeted class of adversaries, the
question arises: what do we with it? What security problems do we wish to
solve, what computation do we put inside the protected envelope, and how do
we position that platform inside a larger system, in order to solve them?

44 TRUSTED COMPUTING PLATFORMS

4.1.1 Kent
Stephen Kent’s 1980 thesis [Ken80] at MIT systematically explored the use

of what he called tamper-resistant modules (TRMs) to protect external software.
At first glance, this seems like the software piracy problem. In the most straight-
forward setting, a software vendor sells one copy of a program to a customer,
with the understanding (implicitly or explicitly) that the user only run that copy
on one computer; piracy consists of making additional copies for use on other
computers—and perhaps even resale—without reimbursing the vendor.

However, Kent treats the problem with more generality and foreshadows
some of the later work in mobile agents. Kent is also concerned with protecting
the vendor’s interest in preserving integrity and perhaps confidentiality of the
software and its operational data, and is also concerned with protecting the
user’s interests in confining the vendor software to only that part of the user’s
system environment the user desires.

Kent then develops a taxonomy of system architectures, partitioned mainly
into two categories. In the encrypted bus approach (generalizing previous
work by Best [Bes80]), Kent places the individual elements of the computer
system into TRMs, and relies on encryption to protect the communication; in the
encrypted storage approach, Kent places the processor and some memory inside
the TRM, and uses encryption to protect that TRM’s interaction with exposed
memory. Kent presents a scheme to distribute and authenticate software to the
various platforms via a series of shared secret keys.

In many ways, Kent’s analysis foreshadowed issues that would later rise
to prominence. Externally archiving TCP state could result in replay attacks:
since an adversary could “turn back the clock” by restoring an archive [Ken80,
p. 46]. The bulk of increased cost of a TCP (over a similar module without
physical security) is due to mechanical engineering problems (p. 70). Providing
a “maintenance hatch” through which a vendor can physically access the device,
for repairs, introduces security weaknesses (pp. 70–71). Encrypting bus traffic
still potentially leaves the system vulnerable to traffic analysis (e.g., pp. 106–
107)—foreshadowing work in oblivious RAM, In the long run, a secure virtual
machine monitor may be the best approach to handling mutually suspicious
applications (e.g., p. 246).

We will revisit these concepts in later chapters.

4.1.2 Abyss
Steve White and Liam Comerford at IBM Watson then followed up the work

by Kent and others, with ABYSS (A Basic Yorktown Security System) [WC87].
White and Comerford dismissed the instruction-level protection of an “en-
crypted bus” approach as inefficient; instead, they designed the ABYSS system
as a TCP that consisted of a small processor and memory, operating in the con-

Foundations 45

text of a host system that was physically unprotected. In this sense, ABYSS
was closer to Kent’s encrypted storage architecture, except ABYSS did not
necessarily require encrypted storage.

White and Comerford focused on trying to protect software, by ensuring that
a customer’s use of vendor code would comply with the license restrictions
established as part of the purchase. However, rather than trying to secure the
entire execution environment of the software, White and Comerford proposed
partitioned computation: dividing the application into a portion that runs on
the exposed host, and a portion that runs inside the TCP. They analyze the
semantic and combinatorial complexity of designing a protected portion that an
adversary cannot reverse engineer; they also develop a method to distribute this
software based on various shared secrets (although they observe that public key
cryptography could be used). White and Comerford also develop an extensive
system to control and distribute rights-to-execute via smart cards and symmetric
cryptography.

(It is interesting to note that White and Comerford indirectly observed that a
trustworthy multi-process operating system might be a substantial implemen-
tation challenge.)

4.1.3 Citadel
Steve White and colleagues then developed and refined the ABYSS design

into a much more comprehensive system, Citadel [WWAP91, Pal92].
Rather than trying to secure an entire system by using the TCP to house a

reference monitor, the Citadel design adopts a security server model: the TCP
device provides security services to the larger system in which it is embed-
ded. However, rather than confining their vision to ABYSS’s view of software
protection via partitioned computation, the Citadel designers explored a much
more thorough space of potential applications:

The TCP might function as a crypto server, providing cryptographic op-
erations to other elements, but keeping keys and sensitive data within the
TCP. The TCP might also be the logical home for specialized cryptographic
hardware within the system.

The TCP might function as an authentication server, providing a secure
local cache of user authentication and authorization data.

The TCP might function as a file/database server, providing files or re-
sponses to clients only when the client is appropriately authorized.

The TCP might function as an access control server, providing resource
access to authorized clients only—but otherwise protecting the resource
from adversaries that may include the client.

46 TRUSTED COMPUTING PLATFORMS

The TCP might function as an audit server, recording logs that cannot be
tampered with even by a compromised client.

The TCP might function as an execution server, a generic platform to catch
and execute programs in a more secure environment than the client can
provide. White et al observe that, in some sense, the execution server is the
universal TCP application, since an appropriately designed execution server
application can be transformed into instances of any of the others.

The designers also provide a more detailed application scenario, for a hypo-
thetical “Widgco” corporation [WWAP91, pp. 51–54].

White et al consider the many places within a distributed system the Citadel
architecture can be places (pp. 38–41), and consider the potential for Citadel
units within an IBM PC (pp. 46–48), a mainframe (pp. 48–49), or a smart
card (pp. 50–51). Echoing Kent’s discussion and foreshadowing later work,
the mainframe discussion suggests the potential for embodying the TCP as a
secure virtual machine.

As Section 4.1.4 and Section 4.2 below will discuss, Citadel did not remain
just a paper design—IBM proceeded to build a number of hardware prototypes.

4.1.4 Dyad
Some of the Citadel prototypes from IBM went to Doug Tygar’s group at

Carnegie Mellon University, where they became the foundation of the Dyad
project, built by Ph.D. student Bennet Yee along with Tygar in the early 1990s
[Yee94, YT95, TY91, TY93].

Yee and Tygar extended the Citadel vision: although the assumption of
physical security is fundamental to the security of distributed systems, “physical
security requirements may be isolated to the secure coprocessor.” Yee and
Tygar went on to demonstrate this explicitly, by developing and implementing
an extensive software architecture (as Section 4.2.2 below discusses), and then
using this platform to implement several applications:

Following in the footsteps of Kent and of White and Comerford, Yee and
Tygar used the TCP for copy protection: the vendor encrypts the protected
software so that only the appropriate TCP can decrypt and execute it. Yee
even demonstrated the feasibility of White and Comerford’s partitioned
computation approach by producing a partitioned version of gnu-emacs.

Following the suggestion of Citadel, Yee and Tygar used aTCP to implement
a secure audit trail.

Yee and Tygar used the TCP for fully decentralized electronic cash. Here,
cash is a balance held inside the TCP. A TCP will only exchange cash when it

Foundations 47

can recognize another appropriately configured TCP. Implementing cash as
a stored value guarded by a computational engine, instead of purely via cryp-
tography [Cha85, for example], enables the use of computation to provide
properties the cryptography cannot. For example, standard transactional
techniques from distributed computation can ensure that the exchange of
cash is always atomic, despite network failures. (Yee’s work was the first
to note that Chaum’s DigiCash did not have these properties.) For another
example, a computational guard allows cash exchanged to be anonymous,
except when they exceed $10K—a requirement of US law.

(It is interesting to note that smart-card-based cash schemes are now com-
mon.)

In both the copy protection and cash applications, Yee and Tygar used the
TCPs as a family of protected places that can exchange house and exchange
objects, and ensure that use of these objects complies with policies that can
travel with the objects. They generalized this to the notion of electronic
contracts.

Another application area Yee and Tygar considered was electronic postage
meters. The US Postal Service permits third-party vendors to lease postal
meters to end customers, who use these meters to print indicia on individual
pieces of mail. The customers reimburse the meter vendor, who reimburses
the postal service. However, adversaries can obtain free postage by copy-
ing indicia directly, and by compromising a postal meter itself. Yee and
Tygar addressed both problems by designing indicia that incorporates cryp-
tographically signed letter-specific information in a two-dimensional bar
code, and then using a Dyad coprocessor to house and wield the secrets that
generate this bar code. Thus, the addition of a TCP can transform a personal
computer into a postal meter.

Yee and Tygar also used a TCP to perform a host integrity check: to partici-
pate in the boot process of the host platform and check each layer of the host
software using Karp-Rabin fingerprints. (Using cryptographic techniques
is critical: standard error-correcting checksums do not protect against ma-
licious errors; an adversary can modify the software to have his intended
altered functionality, but still yield the same checksum.)

This application amplifies the physical security of the TCP to give assurance
about the integrity of the larger host platform, although the host security
achieved is weaker, since a sufficiently dedicated adversary can subvert it
via techniques such as dual-ported memory without breaking the TCP itself.
Section 4.3 below considers this family of applications further.

48 TRUSTED COMPUTING PLATFORMS

4.2 Architectures
Besides pioneering the use of trusted coprocessors for applications, early

work also pioneered the feasibility of actually building real devices.

4.2.1 Physical Security
How can we physically secure a TCP against tamper, in a way that is suffi-

ciently robust and inexpensive to find its way eventually into a mass-produced,
deployable technology?

In 1983, Chaum [Cha84] considered the problem, and hinted at the dis-
tinctions between tamper-evident design, versus tamper detection and tamper
response. Chaum proposed a solution consisting of multiple layers of protective
technology, such that no two layers shared vulnerabilities—thus an attack that
compromise one layer would be detected by another. In 1986, Price [Pri86]
considered surrounding the device with a hard, tamper-resistant material and
embedding conductors in this material to enable tamper detection and response.

However, these discussions were high-level and hypothetical. In 1987, Steve
Weingart [Wei87] presented a thorough practical design, for providing physical
protection for a device such as an ABYSS card for a PC. Weingart decided the
multi-layer approach of Chaum was too complex, and considered a single-layer,
embedded conductor approach. Weingart began by considering how big a hole
the adversary needs to make, in order to mount a useful attack, and decided that
1mm was the lower bound. After experimenting with printed circuit approaches,
Weingart decided wrap the package with several layers of fine nichrome wire,
and then potting it in a hard material. Winding wires is already a well-understand
technology in commercial manufacturing. The winding used multiple strands,
to make it easier for the internal tamper-detection circuitry to detect change,
and was wound at low tension, to make it harder for the adversary to predict
the exact arrangement of wire in any one device. The potting was chemically
and physically stronger than the wire, to make it more likely that penetration
attempts sufficiently strong to disrupt the potting would also disrupt the wire;
the potting also contained alumina or silica, so that attempts to use UV to ablate
the potting would generate destructive heat.

Weingart used CMOS technology within the device, to minimize power con-
sumption. His laboratory prototypes of this protective technology could dis-
sipate 2.5W, sufficient for carefully designed circuits. The internal tamper
detection circuitry compares the state of the wire winding to a recent sample
state (rather than a fixed state), and triggers tamper response if the difference
is too great. (Using this sliding window approach permitted the threshold to
be much smaller, while also accommodating gradual drift in environmental
conditions.) Tamper response disconnects the power of the CMOS RAM, and
crowbars its power pin to ground.

Foundations 49

In 1987, Weingart noted that CMOS RAM would imprint with low temper-
atures, but countermeasures were an area of active work.

Weingart’s basic design—with nichrome wire replaced by a a conductive
mesh printed on a flexible membrane, and with temperature sensing to detect
freezing attacks—then saw commercial use in IBM’s Transaction Security Sys-
tem series of cryptographic accelerators [ADDS91].

4.2.2 Hardware and Software
Citadel. As noted above, the Citadel project at IBM included prototypes. The
physical security boundary would enclose a processor (Intel 386, 16Mhz), a
megabyte of DRAM, and 64K of battery-backed static RAM that is cleared
upon tamper. The prototype also contained a real-time clock. The Citadel
design also included an innovative use of FIFO buffers bracketing special DES
hardware; this design lets the internal CPU set up cryptographic operations, but
then lets the operations proceed without tying up the CPU.

Citadel was designed to have a layered software architecture, with each
layer checking the and loading the next, with a focus on using symmetric-
key cryptography and on keeping software secret. This process starts with the
bootstrap layer. The hardware provides two routes to bootstrap: power-on,
and also a reset in order to initiate a code update. However, in order to keep
the ROM-resident boot code small and reliable, the design did not permit this
bottom layer to use cryptography—which complicates the trust foundation.

The design considered many subtleties. For example, a hardware bootstrap
reloads code, because otherwise a malicious code layer could “prevent its own
update.” For another example, the design worried about maintaining a con-
sistent global state across a distributed network of devices, which may all be
undergoing software update.

Dyad. As mentioned above, Yee and Tygar’s work included implementing
TCP applications on a Citadel prototype. Implementation required establishing
a reasonable programming environment within the device. Yee ported the Mach
microkernel to run inside Citadel; this task required non-trivial modifications
to Mach, in order to accommodate the specialized hardware.

To work around the limited internal memory size, Yee invented and imple-
mented cryptopaging. Dyad provided virtual memory to its applications, and
used the host as a backing store. Dyad then used Citadel’s DES and FIFO hard-
ware to quickly move pages in and out—but encrypting and decrypting them in
the process, in order to preserve confidentiality and integrity of page contents
from a host-based adversary.

Implementing the applications also required a full instantiation of the layered
code-loading process sketched by Citadel. Dyad starts out at boot time with
no secrets within the coprocessor, and no internal code other than the primary

50 TRUSTED COMPUTING PLATFORMS

boot; the other code lives on the host, in suitably protected form. The primary
boot code loads the secondary boot code carries an authentication secret with it,
for zero-knowledge authentication, as well as cryptographic checksums of the
kernel and applications. The Dyad design also noted that the battery-backed
secure memory might store secrets that an appropriate administrator may use to
upgrade software [Yee94, p. 38]. Some variations require an operator to enter
a secret key to decrypt ROM-resident fingerprints [TY91, p. 170]. Using the
same basic ideas behind the electronic contract applications, Dyad developed
a scheme for securely backing up and migrating state from one coprocessor to
another, under appropriate conditions.

Yee’s work also included identifying and working around design flaws in
the Citadel prototype [Yee94, pp. 42–43]. An interrupt problem hampered
throughput. The DES hardware reversed the bits on 2-byte words, and so the
FIFO hardware contained “byte flippers” that the software needed to manipu-
late. More critically, every other decryption “outputs garbage.” The prototype
he worked with did not have busmastering capability: so it could not take over
the host bus and probe memory. This prevented a full prototype implementation
of the host integrity application.

4.3 Booting
So far, we have discussed early work that developed the applications a that a

small trusted computing platform could enable, and that developed the physical
realization of these platforms. Concurrently with this work, the related concept
of secure boot evolved. What can the bootstrap process of a computer system
do, to ensure that the system is actually executing the software it is supposed
to, in a safe configuration? (See [GGKL89] for an early discussion of boot and
loading, in the context of a broader system security architecture.)

Unfortunately, this area can be a bit of a terminology minefield, as some
players (e.g., TCPA/TCG—see Chapter 10) use apparently synonymous terms
to describe distinct concepts. For example:

“Trusted Boot.” Do we want the system to boot the correct configuration?

“Secure Boot.” Do we want the system to boot the correct configuration—
and halt if it cannot?

“Authenticated Boot.” Do we want to be able to verify whatever configu-
ration it was that the system booted?

Since the terminology is not yet standard in the field, we will not be too picky
about the usage within this book.

The basic idea behind secure booting is to decompose the system configu-
ration into a series of entities, and have some entity check the integrity (and

Foundations 51

perhaps identity) of each of these entities. Approaches vary in how they per-
form this decomposition, how they check integrity, which entity or entities do
the checking, and why one should trust them. These approaches suffer from
some common potential vulnerabilities:

Has the entity changed between the time it was checked and the time the
system executes it? (This is a classic instantiation of the time-of-check,
time-of-use problem.)

Was the initial measurement even of the correct entity? For example, how
does a TCP know that the data it just saw really is the operating system an
external host was booting?

How do we assess the correctness of entities that are dynamic? For example,
a system may include non-volatile append-only logs that, by definition, will
continue to evolve and change through execution and across boots. Simply
checking these against a static cryptographic hash will not suffice.

Secure booting is relevant to TCP design for three primary reasons. First,
it was one of the first applications developed for TCPs. Secondly, it also can
be a technique for building a TCP whose computational boundary exceeds
the physical protection boundary. Finally, secure booting is essentially what
TCPs with malleable software configurations do within their physical protection
boundaries.

Tripwire. In the early 1990 Gene Kim and Gene Spafford at Purdue developed
their Tripwire system, a software approach to ensuring the integrity of a UNIX
platform [KS94]. Tripwire checks that for each file in some selected subset,
the contents still match what is considered to be correct value.

Dyad. As mentioned earlier, Yee and Tygar introduced the idea of using an
external secure coprocessor to take over the bus of the host during its boot
process, and to verify the various software components of the host before letting
them boot. They used Karp-Rabin fingerprints, since this approach provided
good security and could be implemented quickly; however, they also considered
other cryptographic approaches. To help protect against “Trojan hardware” on
the host that lies to the coprocessor about what’s being measured, Yee suggests
having the TCP do random “behavior and timing checks” [Yee94, p. 16], but
does not elaborate.

BITS. In 1994, Paul Clark and Lance Hoffmann followed up on this idea with
their Boot Integrity Token System (BITS), which uses a smart card to assist in
checking the integrity of a host operating system. In BITS, the user authenti-
cates to the card via a plaintext password, and then the card and host mutually

52 TRUSTED COMPUTING PLATFORMS

authenticate via a shared secret. The host reads its boot sector from the smart
card; this boot sector then calculates a checksum of the host OS, and compares
this with a value stored on the smart card.

Clark and Hoffmann observed that extra processing time at boot is not par-
ticularly significant, since users expect booting to take time.

Penn’s AEGIS. In 1997, Bill Arbaugh et al at the University of Pennsylvania
followed up with AEGIS [AFS97]. Arbaugh starts with a handful of axioms:
the initial BIOS can be trusted; a component that has already been checked by a
trusted component can be trusted; and no component can be executed until it is
trusted. Arbaugh then formally analyzed the boot process of an IBM PC, broke
it into a directed acyclic graph, rooted at BIOS, and adjusted BIOS so that each
parent checks a cryptographic hash of a child before executing it. An add-on
PROM board stores hashes, and provides a facility to fetch a correct version of
a software component should the integrity check fail.

Itoi et al [IAPR02] then extended the AEGIS approach to store hashes in a
user smart card.

(Unfortunately, MIT started a TCP-related project that also is called “AEGIS,”
complicating terminology. Chapter 12 discusses this other AEGIS.)

4.4 The Defense Community
The above evolution occurred in the open world of academic and industrial

research. However, the US defense and intelligence communities played a
major role in shaping the early stages of field of computer security. Some
projects relevant to TCPs also emerged from that community.

The Logical Coprocessing Kernel (LOCK) was one such project [Say02, for
example]. Started in 1973, this project was an attempt to use hardware—along
with other tools such as formal assurance processes and capability-based system
design, and principals of virtual machine monitors—to build what this subcom-
munity termed “highly trustworthy” systems. In LOCK, a System-Independent
Domain-Enforcing Assured Reference Monitor (SIDEARM) implemented an
MLS policy; a Bulk Encryption Device (BED) encrypted sensitive data as it
was stored. Unlike the thrust of TCP work in this book, LOCK seemed to
depend on the hardware more for performance than for physical protections.
The project died out due to business and engineering reasons.

Another relevant project was the Fortezza personal token, used today to house
personal keys.

4.5 Further Reading
Bennet Yee’s thesis [Yee94] provides a good exposition of all three compo-

nents: applications, internal architecture, and secure boot; [TYH96] examines
the postal meter application in more detail. Weingart’s 1987 paper [Wei87]

Foundations 53

gives good insight into the physical security design. The longer Citadel re-
port [WWAP91] is also good, but does not appear to be available in electronic
format. In the secure boot arena, Arbaugh’s paper [AFS97] is a nice presenta-
tion of the problem.

Chapter 5

DESIGN CHALLENGES

The early experimental work suggested the utility of a a secure coprocessor
platform as a generic product that enables development and deployment of
TCP applications. This chapter discusses the design challenges and tradeoffs
we faced, in the mid-1990s, when trying to transform this notion into a real
product. Section 5.1 sets the context for this project. Section 5.2 discusses the
design obstacles we faced. Section 5.3 boils down this analysis into a set of
requirements for a product. Section 5.4 sketches the technology we developed
to help overcome these obstacles, and some usage scenarios this technology
might enable.

5.1 Context
From the ABYSS and Citadel work, the notion of a secure coprocessor

emerged. This work, along with Weingart’s work on physical security, demon-
strated that building secure coprocessor platforms in quantities sufficiently large
to be widely deployed might be feasible. The Dyad work demonstrated that
using secure coprocessors to solve real security problems in distributed envi-
ronments might be feasible. This progression, combined with a number of
other threads, led to the my arrival at IBM Watson in 1996, and subsequent par-
ticipation in creating a high-end secure coprocessor platform as a commercial
product.

Two paths—personal and commercial—led to this situation.

5.1.1 Personal
On a personal level, in the mid-1990s, I was working in the Computer Re-

search and Applications group at Los Alamos National Laboratory. At that
point—the dawn of the Web—many enterprises were migrating their legacy

56 TRUSTED COMPUTING PLATFORMS

services—based on paper, telephone, and offices—to the new electronic envi-
ronment the Web offered. As the nature of “distributed computing” fundamen-
tally changed, I was part of a team doing vulnerability analyses and security
designs for clients, primarily public-sector, considering this migration.

The application and deployment scenarios we were encountering were rife
with situations where one party needed to trust the integrity and occasionally
confidentiality of computation taking place on a machine controlled by a dif-
ferent party with different interests. Being part of Tygar’s group at CMU had
exposed me to Citadel and Dyad, and also convinced me of the potential for
secure coprocessing to address the trust scenarios emerging in this new infor-
mation infrastructure (e.g., see [Smi96]).

My arguments convinced my superiors to fund a research project in secure
coprocessor applications. However, this funding was contingent on several
criteria. I had to build the applications on real secure coprocessors, not lab toys,
and I needed to be able to scale up gradually through a series of pilots: ten units,
then 100 units, then a thousand units. Unfortunately, the platform necessary for
me to follow these constraints did not exist. Citadel remained a small number
of hand-built prototypes (“about half of which work,” one engineer quipped);
smaller PCMCIA-based tokens available at the time provided much weaker
security and programming environments, and vendors did not want to make
them available to me unless I could demonstrate a market for tens of thousands
of units—in which case they might “help” me develop my applications.

Elaine Palmer, leading the Citadel project at IBM, suggested instead that I
come to IBM Watson and do secure coprocessor research there. I accepted.

5.1.2 Commercial
Without real platforms in large quantities, secure coprocessing would remain

an academic exercise. Production of such platforms would require significant
investment of resources; except perhaps for the brief dot-corn bubble, such
investment does not occur without specific business objectives.

When I arrived at IBM and signed the employee confidentiality agreement,
the situation was explained. The business arm of IBM had long supported the
Common Cryptographic Architecture (CCA), an API for cryptographic services.
By the mid-1990s, IBM was marketing a hardware cryptographic accelerator
for CCA, and realized that its next-generation accelerator would require many
of the properties that the ABYSS and Citadel (and Dyad) researchers had been
proposing for secure coprocessors. This realization led to a unique opportunity:
the Watson researchers who had been preaching the secure coprocessor vision
suddenly had funding to define and design the sought-after generic platform—
and to help build it as a real product. But this opportunity was coupled with
a Faustian twist: the platform must satisfactorily support an application that
implements the CCA API. (This design constraint became significantly more

Design Challenges 57

burdensome with Mike Bond’s later discovery [BA01] of flaws in this version
of CCA API—which the many in the media then transformed to “4758 flaws”.
Even as we go to press, another cryptanalysis paper has surfaced [PH04] that
misses the fundamental difference between the 4758 platform and the CCA
application.)

This was the challenge: define and build the trusted computing platform we
always wanted—but bring it in on time, and make sure that it can be turned into
a crypto accelerator that satisfies IBM’s business needs.

5.2 Obstacles
Realizing this vision of high-end secure coprocessors as trusted computing

platforms requires overcoming the significant obstacles that confront an orga-
nization wishing to develop and deploy real applications using this technology.

5.2.1 Hardware
Tamper Protection. As we have discussed, most discussions of secure hard-
ware usually use phrases like “tamper-proof,” “tamper-resistant,” “tamper-
evident” or “tamper-responsive.” Any realistic assessment recognizes that
“tamper-proof” hardware is unattainable. However, our basic model assumes
that the TCP somehow renders some stored data unavailable to some adver-
saries. In stronger platforms, these adversaries may have direct physical access,
and thus one wants to sketch these TCPs as somehow responding to tamper by
zeroizing sensitive information.

How should this happen? Initially, we can divide the approaches into active
and passive. Active tamper-response relies on the device itself to detect tamper
attempts and destroy its secrets. Active response can be computational—which
requires that during tamper, the processor remain alive long enough to destroy
the secrets—or depend instead on independent special-purpose circuitry that
more quickly crowbars the memory. Passive techniques rely on physical or
chemical hardness (and sometimes on explosives).

Passive protection is difficult to carry out effectively (witness the continued
permeation of smart card technology) and difficult to apply to multi-chip mod-
ules. But on the other hand, using active protection requires recognizing that
the device is only as secure as long as the necessary environment exists for the
active protection to function. Minimally, this recognition requires grappling
with some difficult issues:

The continuous existence of this environment requires a continuous source
of power.

What exactly do we know about the device after an interval in which this
environment fails to exist?

58 TRUSTED COMPUTING PLATFORMS

Does the device always protect itself, or only between visits by a security
officer?

What should happen to a device that zeroizes its secrets?

Exactly how the zeroizable secrets should be stored raises additional design
issues—for example, as Section 3.5 discussed, various environmental condi-
tions can cause static RAM to become imprinted with the data that is supposed
to be erased.

Application-specific contexts can suggest other avenues for tamper protec-
tion. For example, Anderson and Bezuidenhoudt discuss an electric power
meter that used social pressure as a tamper-protection technique: if it detected
tamper, it responded by shorting out power, tripping a local breaker and blacking
out power for local users for over a day [AB96].

Trusted Paths. Effectively using a trusted device in human-based applications
often requires effective authentication of communications between a human and
their trusted device [GSTY96]. A human-usable I/O path on the secure device
itself makes these problems simpler—but although a nice abstraction, such a
path can greatly compromise the physical security, since we need to punch a
hole through the armor to let the LCD or keypads through.

Hosts. A TCP that exists as a secure coprocessor requires, almost tautolog-
ically, a host system. Wide deployment of a secure coprocessor application
requires considering the population of host machines:

What physical interface should be used? How does this choice affect ease
of installation, number of potential platforms, and performance of copro-
cessor?

For example, chip-card, PCI-bus, and USB interfaces all give different an-
swers to these questions. For a time in the mid-1990s, the PC-card (at
that time, “PCMCIA”) interface and form factor seemed poised to become
the vehicle for secure user tokens, because PC cards were portable and PC
slots were becoming ubiquitous. At the time, however, one vendor told me
how the connector on the test rig at the end of their manufacturing process
needed to be replaced regularly, because the connectors were only designed
for limited number of insertions/removals. Had we deployed an application
where a large number of users used a PC card to authenticate to some pub-
lic machine, this limited lifetime might have caused problems—user cards
would have been fine, but the connectors on multi-user machines would
have failed.

Design Challenges 59

What device drivers and other associated host-side software are required?
How does this software get to the host? What possibilities exist for attacking
the application by attacking the host-side software?

How much does the coprocessor depend on the host for functions such as
storage of code or encrypted virtual memory pages? Does the coprocessor
“outsource” actual computation to the host, perhaps after performing some
type of integrity check?

Cost and Durability. For an application to succeed, someone needs to create
and distribute a population of secure coprocessors. This task requires balanc-
ing the cost of the device with its power and protections, as well as considering
longer-term reliability issues. (Indeed, the often-lamented computational re-
strictions of chip cards are a consequence of the requirement to keep them
highly robust to physical wear-and-tear.)

Exportability. For a long time, another challenge facing any practical devel-
opment and deployment of cryptographically powerful devices was compliance
with the U.S. export laws, which limited what capabilities could be included in
technology shipped outside the U.S. Regarding this topic, one typically hears
political and idealogical discussions: ranging from assertions that the true pur-
pose was to suppress strong cryptography in domestic products, in order to
facilitate illegal domestic spying, to assertions that it is critical to keep strong
cryptography away from terrorists.

From a designer’s perspective, the consequence of the export laws was not
ideology but complexity. It was not a simple matter of “non-U.S. weak
crypto.” Rather, various customers, lines of business, and regions might have
special permissions for certain types of operations, and we needed to take
into account this rather complex (and potentially dynamic) policy space when
designing generic boxes.

5.2.2 Software
Using a TCP requires putting application-specific software on it. Developing

and deploying TCP applications thus requires the ability to develop software
for the device. This requirement led to many challenges:

Is development possible on a small scale with small numbers of devices—or
must the application developer first convince a hardware manufacturer of
the business case for thousands or millions of units?

Is development possible independent of the hardware manufacturer—or
must the application developer work closely and share plans and code with
the manufacturer?

60 TRUSTED COMPUTING PLATFORMS

Does a robust programming environment exist for the device, or must code
be hand-tuned? What about debugging and testing?

If independent development is possible, what prevents malicious or faulty
software from compromising core device keys? Do these protections consist
of verified hardware and software, or depend solely on complex software
with a track record of flaws?

Once application software is developed, the developer needs to ensure that
the potentially untrusted user, in a potentially hostile environment, ends up with
an authentic, untampered device that is programmed with the right software.

The developer could install the software at the factory. However, this option
forces the application developer to have a substantial presence in the factory, and
forces the factory to customize their processes to individual application devel-
opers. This approach may be prohibitively costly for small-scale development.
This option also complicates the manufacturing process: each new variation
on a shippable product explodes the amount of paperwork and bookkeeping,
particularly for well-established vendors.

However, installing software at some later point, after the TCP leaves the
factory, raises additional issues.

What about the security of the shipping channel? What if the device is
modified between the time it leaves the factory and the time the software
is installed? If, as part of a vulnerability analysis, one considers how to
maximize the gain from a $20K budget, bribing a truck driver might be
rather effective. (I have seen at least one well-respected speaker overlook
the fact that if a vendor can package a real device in a way that does not look
tampered, then perhaps an adversary with access to the shipping channel
could as well.)

How does the device know what software to accept? (Accepting just any-
thing opens the possibility of tamper via false software load.)

Does a device carry a key—or secret software—whose exposure compro-
mises that device, or other devices?

With general-purpose programmable hardware intended for multiple appli-
cation developers, installation after the factory needs to ensure that hardware
loaded with one developer’s software cannot claim to be executing software
from a different developer.

If not at the factory, the application developer might install software at their
own site, or at the end-user site. Installing the software at the application
developer forces the developer to ship the hardware to the end-users. Installing
the software at the end-user’s site requires the need for security officers, or for

Design Challenges 61

the device itself to exert fairly robust control, authentication, and confirmation
of software loads.

The software installation process may also have unpleasant interactions with
the desired security model. For example, if the application developer requires
that their software itself be secret, but the hardware only provides a limited
amount of tamper-protected storage, then the installation process must include
some way of installing the software decryption key in that storage.

Most post-factory installation scenarios require that the devices leave the fac-
tory with some type of security/bootstrap code, which raises additional issues.

Software Maintenance. After installation, how do the software developers
then proceed to securely carry out the maintenance and upgrades that such
complex software inevitably requires?

How does the device authenticate such requests? Must the developer use an
on-site “security officer,” or can they use remote control? If the latter, how
much interaction is required? Does the application developer have to un-
dergo a lengthy handshake with each deployed device? Does the developer
need to maintain a database of device-specific records or secrets?

How can participants in an application know for certain that an upgrade has
occurred? (After all, the purpose of the upgrade might be to eliminate a
software vulnerability which an adversary has already used to explore the
contents of privileged memory.)

What should happen to stored data when software is upgraded? Not support-
ing “hot updates” that preserve secrets is cleaner, but can greatly complicate
the difficulty of performing updates. (Some application developers in the
financial cryptography arena have insisted that all updates destroy all se-
crets, because that makes it easier to reason about security. Others say that
customers complain when they need to back-up and reload keys due to a
routine software upgrade they already trust.)

What atomicity does the device provide for software updates? Can failures
(or malice) leave the device in a dangerous or inoperable state? What if the
software that cryptographically verifies updates is itself being updated?

To avoid grappling with these issues, some developers may choose simply to
not allow updates. However, the decision certainly needs to be balanced against
hardware expense and software complexity (hence likelihood of upgrade).

Multi-Party Issues. The foregoing discussion largely focused on a model
where basic device hardware had one software component that needed to be
installed and updated. In reality, this situation may be more complicated. Mul-
tiple software layers may lie beneath the application software:

62 TRUSTED COMPUTING PLATFORMS

The presence of a device operating system (in order to make software de-
velopment easier) raises the questions of when, where, and how the OS is
installed and updated.

The OS may come from an independent software developer, like the appli-
cation does. This scenarios gives rise to potentially four different entities
involved in a TCP configuration: the hardware manufacturer, the OS devel-
oper, the application developer, and the end-user.

The more tasks assigned to the basic bootstrap/configuration, the more likely
this foundational software might also require update.

Multiple layers each controlled by a different authority makes the software
installation and update problem even more interesting. For example, the ability
to perform “hot-updates” potentially gives an OS vendor a backdoor into the
application secrets. What if the application developer does not necessarily
trust the OS vendor to be honest—or to release bug-free updates? What if the
application developer wants to reserve the right to inspect and approve updates
before letting them come in under the application?

The simple answer of “not allowing any OS updates” avoids these risks, but
introduces the problem of what to do when a flaw is discovered in security-
critical system software—especially if this software is too complex to have
been formally verified. (Formal verification does not eliminate the potential of
flaws, but would at least provide greater assurance of their absence.)

Some scenarios may additionally require multiple sibling software compo-
nents, at the same layer (although this flexibility must be balanced against the
risks of potentially malicious sibling applications, the hardware expense and
the sensitivity of the application).

Comparison to PCs. It might be enlightening to compare this situation with
software development for ordinary, exposed machines, such as personal com-
puters. For PCs, software developers do not need to build and distribute the
computers themselves. Software developers never need meet or verify the iden-
tity of the user. Software developers do not need to worry about how or where
the user obtained the machine; whether it is a genuine or modified machine, or
whether the software or its execution is being somehow modified. Furthermore,
developers of the application software usually do not also have to develop and
maintain the operating system or the ROM BIOS.

How do we preserve these features of the legacy software market in the TCP
arena? Should we?

The list of obstacles to deploying TCP applications naturally leads to design
issues for those hoping to minimize these obstacles by building such platforms.

Design Challenges 63

Lessons Learned. The issues here arose in part from the collective experience
of the IBM research group tasked with developing a TCP—and our connections
to the business units who had been selling physically hardened crypto accel-
erators. Our design choices for this product were driven not just by academic
analysis, but also by more practical factors and lessons learned. For example:

Software is less stable than hardware—especially if the time delay between
manufacture and end-user installation is considerable.

The complexity of manufacturing and maintenance support appears to in-
crease exponentially with each shippable variation of a commercial product.

No one wants to trust anyone else more than necessary. The end-user does
not really want to trust any of the software vendors; the software vendors
do not trust each other; and everyone is suspicious of the manufacturer.

Expensive hardware must be repairable, if possible.

5.3 Requirements
Section 5.2 sketched some design obstacles. We now elaborate these thoughts

into a more formal consideration of requirements that drive the architecture.
In order to be effective, our solution must simultaneously fulfill two different

sets of goals. The device must provide the core security and trust properties
necessary for TCP applications. But the device must also be a practical, com-
mercial product; this goal gives rise to many additional constraints, which can
interact with the security properties in subtle ways.

5.3.1 Commercial Requirements
Our device must exist as a programmable, general-purpose computer.
To begin with, the goal of supporting the widespread development and de-

ployment of applications has many implications:

The device must be easily programmable.

The device must have a general-purpose operating system, with debugging
support when appropriate.

The device must support a large population of authorities developing and
releasing application and OS code, deployed in various combinations on
different instantiations of the same basic device.

The device must support vertical partitioning: an application may come
from one vendor, an OS from another, bootstrap code from a third.

These vendors may not necessarily trust each other—hence, the architecture
should permit no backdoors: ways for vendor Alice to gain access to vendor
Bob’s data or code, in a way that Bob did not approve.

64 TRUSTED COMPUTING PLATFORMS

The process of manufacturing and distribution must be as simple as possible:

We need to minimize the number of variations of the device.

It must be possible to configure the software on the device after shipment,
in what we must regard as a hostile environment.

We must reduce or eliminate the need to store a large database of records—
secret or otherwise—pertaining to individual devices.

As an international corporation based in the United States, we must abide
by US export regulations.

The complexity of the proposed software—and the cost of a high-end device—
mean that it must be possible to update the software already installed in a device.

These updates should be safe, easy, and minimize disruption of device op-
eration.

When possible, the updates should be performed remotely, in the hostile
field, without requiring the presence of a trusted security officer.

When reasonable, internal application state should persist across updates.

Particular versions of software may be so defective as to be non-functional
or downright malicious. Safe, easy updates must be possible even then.

Due to its complexity and ever-evolving nature, the code supporting high-
end cryptography—including public key, hashing, and randomness—must
itself be updatable. But repair should be possible even if this software is
non-functional.

The reader should note that the design choices often interact in subtle ways. For
just one example, the business decisions to support remote update of potentially
buggy kernel-level software requires the ability to remotely authenticate that this
repair took place, which in turn may require changing the hardware to provide
a region of secure memory that is private even from a defective supervisor-level
operating system.

5.3.2 Security Requirements
The primary value of a TCP is its ability to provide a trustworthy and trustable

sanctuary in a hostile environment. This goal leads to two core security require-
ments:

The device must really provide a safe haven for application software to
execute and accumulate secrets.

Design Challenges 65

It must be possible to remotely distinguish between a message from a gen-
uine application on an untampered device, and a message from a clever
adversary.

We consider these requirements in turn.

Safe Execution. It must be possible for the card, placed in a hostile envi-
ronment, to distinguish between genuine software updates from the appropriate
trusted sources, and attacks from a clever adversary. The foundation of TCP ap-
plications is that the platform really provides safe haven. For example, suppose
that, like Yee, we are implementing decentralized electronic cash by having two
secure devices shake hands and then transactionally exchange money. Such a
cash program may store two critical parameters in tamper-protected memory:
the private key of this wallet, and the current balance of this wallet. Minimally,
it must be the case that physical attack really destroys the private key. How-
ever, it must also be the case that the stored balance never change except through
appropriate action of the cash program. For example, the balance should not
change due to defective memory management or lack of fault-tolerance in up-
dates. Formalizing this requirement brings out many subtleties, especially in
light of the flexible shipment, loading, and update scenarios required above.
For example:

What if the adversary physically modifies the device before the cash program
was installed?

What if the adversary “updates” the cash program with a malicious version?

What if the adversary updates the operating system underneath the cash
program with a malicious version?

What if the adversary already updated the operating system with a malicious
version before the cash program was installed?

What if the adversary replaced the public key cryptography code with one
that provides backdoors?

What if a sibling application finds and exploits a flaw in the protections
provided by the underlying operating system?

After much consideration, we developed safe execution criteria that address the
authority in charge of a particular software layer, and the execution environment—
the code and hardware—that has access to the secrets belonging to that layer.

Control of software. If Authority N has ownership of a particular software
layer in a particular device, then only Authority N , or a designated superior,
can load code into that layer in that device.

66 TRUSTED COMPUTING PLATFORMS

Access to secrets. The secrets belonging to this layer are accessible only
by code that Authority N trusts, executing on hardware that Authority N
trusts, in the appropriate context.

5.3.3 Authenticated Execution
Providing a safe haven for code to run does not do much good, if it is not

possible to distinguish this safe haven from an impostor. It must thus be possible
to:

authenticate an untampered device;

authenticate its software configuration; and

do this remotely, via computational means.

The first requirement is the most natural. Consider again example of decen-
tralized cash. An adversary who runs this application on an exposed computer
but convinces the world it is really running on a secure device has compro-
mised the entire cash system—since he or she can freely counterfeit money by
incrementing the stored balance.

The second requirement—authenticating the software configuration—is of-
ten overlooked but equally important. In the cash example, running a mali-
ciously modified wallet application on a secure device also gives an adversary
the ability to counterfeit money. For another example, running a Certificate
Authority on a physically secure machine without knowing for certain what
key generation software is really installed leaves one open to attack [YY96].

The third requirement—remote verification—is driven by two main con-
cerns. First, in the most general distributed application scenarios, participants
may be separated by great physical distance, and have no trusted witnesses at
each other’s site. Physical inspection is not possible, and even the strongest
tamper-evidence technology is not effective without a good audit procedure.
Furthermore, we are reluctant to trust the effectiveness of commercially fea-
sible tamper-evidence technology against the dedicated adversaries that might
target a high-end device. Tamper-evidence technology only attempts to en-
sure that tampering leaves clear visual signs. We are afraid that a device that
is opened, modified and reassembled may appear perfect enough to fool even
trained analysts.

This potential for perfect reassembly raises the serious possibility of attack
during distribution and configuration. In many deployment scenarios, no one
will have both the skills and the motivation to detect physical tamper. The user
who takes the device out of its shipping carton will probably not have the ability
to carry out the forensic physical analysis necessary to detect a sophisticated
attack with high assurance. Furthermore, the user may be the adversary—
who probably should not be trusted to report whether or not his or her device

Design Challenges 67

shows signs of the physical attack he or she just attempted. (Again, consider
who benefits from tampering with an electronic wallet—or a postal meter.)
Those parties—such as, perhaps, the manufacturer—with both the skills and the
motivation to detect tamper may be reluctant to accept the potential liability of
a false negative tamper evaluation. For all these reasons, our tamper-protection
approach must not rely on tamper-evidence alone.

Computational Power. A question that can arise in a design decision is how
much computational power and memory should live within the protected en-
vironment of a TCP. On an engineering level, the answer may rest on issues
such as how much heat dissipation the physical packaging allows, what type of
memory can be effectively zeroized, and what commercial chip packaging is
available. On an economic level, the answer may rest on the “business case”:
how much the customer is willing to pay for, and (to a lesser extent, perhaps)
how reliable the technology appears to be. (For example, should a designer put a
hard disk inside the packaging?) On a security level, we might think about how
well-funded the adversary is likely to be, and how long the security of the TCP
should last. (For example, designing a box that will remain tamper-protected
even against adversaries whose technologies are 20 years ahead of today might
be rather tricky.)

However, this rather simple question belies some deeper issues. How much
computation and memory is enough to secure a broader application? In the
mid-1990s, a JavaCard pioneer chided me that “you guys are always saying
‘oh, if only we had a little more CPU.’ ” More serious reflection sees some
alternate computational models emerging: with a magic box of size N that has
a certain list of features, how big a problem can be “secured?” We’ll revisit this
issue in Chapter 9.

5.4 Technology Decisions
We decided on building a board-level coprocessor assembled, as much as

possible, from existing commercial technology. For protection, we chose active
tamper response (electrical, not computational). In an attempt to broaden the
family of compatible hosts, we used a PCI interface and developed host-side
software for several popular operating systems.

Figure 5.1 sketches the hardware architecture of the coprocessor: a 486-class
CPU; accelerators for modular exponentiation and DES (and, in the follow-on,
TDES and SHA-1); noise-based random number generation. Volatile dynamic
RAM provides the main operational store; battery-backed static RAM (BBRAM)
provides the non-volatile protected memory. FLASH provides long-term stor-
age for unprotected data. One sector of the FLASH is hardwired as ROM (as
Section 3.4.2 discussed).

68 TRUSTED COMPUTING PLATFORMS

Figure 5.1. The basic hardware architecture.

Making a commercial product support our TCP application design requires
giving the device a robust programming environment, and making it easy for
developers to use this environment—even if they do not necessarily trust IBM
or each other.

These goals led to a multi-layer software architecture:

a foundational Miniboot layer manages security and configuration;

an operating system layer manages computational, storage, and crypto-
graphic resources; and

an unprivileged application layer uses these resources to provide services

(“Miniboot” was named because it needed to be simple enough to be secure
with high assurance, and because it needed to run at boot time.)

Figure 5.2 sketches this architecture. Miniboot consisted of two components:
Miniboot 0, residing in ROM, and Miniboot 1, which resides, like the OS and
the application, in rewritable non-volatile FLASH memory.

To simplify the production process and comply with export laws, all devices
were shipped the same: with only the bootstrap layer. Software installation
(and update) could occur at any point thereafter, including at the end-user site,
via broadcast-style commands from remote authorities.

In practice, IBM made available two optional code-load sequences that came
“for free” for a coprocessor:

Design Challenges 69

Figure 5.2. The basic software architecture.

The CP/Q++ operating system layer consists of the CP/Q embedded OS,
pared down to eliminate modules unnecessary for this hardware and en-
hanced with “managers” providing interfaces to the cryptographic hardware
and BBRAM.

The CCA application layer lives on top of CP/Q++, and turns the box into a
crypto accelerator.

To enable development, IBM provided code-load commands that allowed a user
to switch between standard CP/Q++ and a debug-enhanced one, and to install
arbitrary applications in the application layer.

Our device was not a portable user token. Because of our choice of active
tamper response, factors such as low temperatures, x-rays, and bungled battery
changes may all trigger zeroization—since otherwise, these are avenues for
undetectable tamper. (Chapter 6 discusses the technical details of this architec-
ture.)

Usage Scenarios. Enabling widespread development and deployment of se-
cure coprocessing applications required a tool that was easily programmable.

However, adding sufficient computational power and physical security re-
sulted in a TCP sufficiently expensive that the ability to update software became
necessary. The fact that our device is more a fixed extension of the host than
a highly portable user token made supporting field installation of software a
necessity.

Essentially, we converged on the generic PC model discussed in Section 5.2,
and attempted to maximize independence between the development/distribution
of the hardware, and the development/distribution of the software. As with PCs,
we wanted end users of our TCP to obtain their hardware from anywhere, and

70 TRUSTED COMPUTING PLATFORMS

install the software on their own. But unlike PCs, bona fide software installed
into an untampered device can authenticate itself as such.

Designing for this “worst-case” approach—software from multiple parties
gets installed and updated in the hostile field, without security officers—permits
a wide range of development, deployment, and usage scenarios.

Application Development.

This design could support off-the-shelf applications. A party wishing to de-
ploy an application may find that suitable software (for example, application-
layer code that transforms the device into a crypto accelerator providing
whatever crypto API and algorithms are currently fashionable) is already
available.

This design could support off-the-shelf operating systems. A party wishing
to deploy a more customized application may choose an OS that is already
available, register with that vendor, and build on that programming environ-
ment.

This design could support debug and development. Debug and development
environments become just another variation of the operating system—the
developer can use an off-the-shelf device, with a different OS load.

This design could support on the metal applications. A party wishing com-
plete on-the-metal control of the device can register with the manufacture,
and take control of the OS layer in new off-the-shelf devices.

This design could also support incremental validation. Stakeholders in a
TCP application deployment might want more assurance that they can trust
in this platform than mere vendor claims can provide. However, existing
validation programs—such as (then) FIPS 140-1 [Nat94]—apply to an entire
configured device, and can be extremely painful to undergo. Secure field
upgradability would make our makes a device not a “FIPS 140-1 Module”
per se but rather a partially certified “meta-module.” If the hardware and
bootstrap software have FIPS validation, a developer need only submit their
additional code to obtain a fully validated module for their application.
(Chapter 8 considers this topic further.)

Application Deployment.

This design can support software distribution by remote broadcast. A de-
veloper can avoid the hassle of distributing hardware themselves by just
registering as a code vendor and publishing a download command on the
Web. The end-users can purchase the hardware from any standard manu-
facturer channel.

Design Challenges 71

This design can support software distribution by remote handshake. If the
developer would like more control, he can use targeting and authentica-
tion features of the device bootstrap to interactively install software into a
particular device, remotely over an open network. This installation could
even involve encrypting the software for that device—hearkening back to
the designs of Citadel, Yee, Tygar, and Kent.

This design can support software distribution by local security officers. The
developer can always eliminate the open network, and send an authorized
security officer with their own trusted device to perform installation.

This design can support software distribution by direct shipment. A devel-
oper can also follow the traditional model of obtaining the devices, install
the software, and ship them to their users.

Our long-term vision was commerce and computation among people who
have never met. The ability for devices to authenticate themselves and their
software configurations permits users of such secure devices to securely interact
with each other remotely, across an open network—even if these users have met
neither each other nor the application developer.

5.5 Further Reading
Section 5.2 was based on Section 4 from my 1998 Financial Cryptogra-

phy paper [SPW98], and Section 5.4 was based on Section 5 and Section 6.
Section 5.3 was based on Section 2 from my 1999 Computer Networks pa-
per [SW99],

[DPSL99] provides more information on the internal software design of
CP/Q++; [DLP+ 01] provides a retrospective looking at the product effort.

Chapter 6

PLATFORM ARCHITECTURE

Chapter 2 laid out some motivations forTCPs. Chapter 3 surveyed the attack
space. Chapter 4 reviewed some early design work in this area. Chapter 5 set the
stage that resulted: my group at IBM had the chance to design and build a generic
secure coprocessor platform, as a product, to enable TCP applications in the
real world (even though IBM thought they were getting a crypto accelerator);
however, this design needed to satisfy a range of commercial and security
constraints.

This chapter lays out the the security architecture I developed with Steve
Weingart to address these problems.

One of the lessons I learned from this design experience is that elements of
the design cannot be considered in isolation from each other. Consequently, this
chapter begins by discussing the overall security architecture that we developed
(Section 6.1). It then introduces each individual component: ensuring that
secrets are destroyed upon tamper (Section 6.2); ensuring that secrets start out
secret (Section 6.3); ensuring that the flaws inevitable in a rich computational
environment do not reveal these secrets (Section 6.4, Section 6.5); and enabling
developers to develop, deploy, and maintain code (Section 6.6). Section 6.7
then sketches how all these pieces work together.

(Later, Chapter7 will discuss how we ensure the resulting secure coprocessor
application can prove it is “the real thing, doing the right thing”; Chapter 8 will
discuss the formal modeling and validation techniques we used to increase
assurance that the design works.)

6.1 Overview
In order to meet the requirements of Chapter 5, our architecture must ensure

secure loading and execution of code, while also accommodating the flexibility
and trust scenarios dictated by commercial constraints.

74 TRUSTED COMPUTING PLATFORMS

6.1.1 Security Architecture
Secrets. Discussions of secure coprocessor technology usually begin with
“physical attack zeroizes secrets.” Our security architecture must begin by
ensuring that tamper actually destroys secrets that actually meant something.
We do this with three main techniques:

The secrets go away with physical attack. Section 6.2 presents our tamper-
detection circuitry and protocol techniques. These ensure that physical
attack results in the actual zeroization of sensitive memory.

The secrets started out secret. Section 6.3 presents our factory initializa-
tion and regeneration/recertification protocols. These ensure that the secrets,
when first established, were neither known nor predictable outside the card,
and do not require assumptions of indefinite security of any given key pair.

The secrets stayed secret despite software attack. Section 6.4 presents
our hardware ratchet lock techniques. These techniques ensure that, despite
arbitrarily bad compromise of rewritable software, sufficiently many secrets
remain to enable recovery of the device.

Code. Second, we must ensure that code is loaded and updated in a safe
way. Discussions of code-downloading usually begin with “just sign the code.”
However, focusing on code-signing alone neglects several additional subtleties
that this security architecture must address. Further complications arise from the
commercial requirement that this architecture accommodate a pool of mutually
suspicious developers, who produce code that is loaded and updated in the
hostile field, with no trusted couriers.

For code loading and update, we must have techniques that address questions
such as:

What about updates to the code that checks the signatures for updates?

Against whose public key should we check the signature?

Does code end up installed in the correct place?

What happens when another authority updates a layer on which one’s code
depends?

For the code loading techniques to be effective, we must also address issues
such as:

What about the integrity of the code that checks the signature?

Can adversarial code rewrite other layers?

Platform Architecture 75

Section 6.5 presents our techniques for code integrity, and Section 6.6 presents
our protocols for code loading. Together, these ensure that the code in a layer is
changed and executed only in an environment trusted by the appropriate code
authority.

Goals. Our full architecture carefully combines these building blocks de-
scribed to achieve the required security properties.

Section 6.7 presents how our secrecy management and code integrity tech-
niques interact to achieve the requirement that software loaded onto the card
can execute and accumulate state in a continuously trusted environment, de-
spite the risks introduced by dependency on underlying software controlled
by a potentially hostile authority.

Chapter 7 will present how our secrecy management and code integrity tech-
niques interact to achieve the requirement that a relying party can distinguish
between a message from a particular program in a particular configuration
of an untampered device, and a message from a clever adversary.

6.2 Erasing Secrets
The physical component of the security architecture was designed by Steve

Weingart, and continued in the tradition of his work (Section 4.2.1)
and his physical defense design philosophy (Section 3.7).

The main goal of physical security is to ensure that the hardware can detect if it
remains in an unmolested state—and if so, to ensure that the hardware continues
to work in the way it was intended to work. To achieve physical security,
we started with our basic computational/crypto device and added additional
circuitry and components to detect tampering by direct physical penetration or
by unusual operating conditions. If the circuit detects a condition that would
compromise correct operation, the circuit responds in a manner to prevent theft
of secrets or misuse of the secure coprocessor.

We felt that commercially feasible tamper-evidence technology and tamper-
resistance technology cannot withstand the dedicated attacks that a high per-
formance, multi-chip coprocessor might face. Consequently, our design incor-
porates an interleaving of resistance and detection/response techniques, so that
penetrations are sufficiently difficult to trigger device response.

Historically, work in this area placed the largest effort on physical pene-
tration. Preventing an adversary from penetrating the secure coprocessor and
probing the circuit to discover the contained secrets is still the first step in a
physical security design. As feasible tampering attacks become more sophisti-
cated through time and practice, it has become necessary to improve all aspects
of a physical security system. Designs get better and better, but so do the ad-

76 TRUSTED COMPUTING PLATFORMS

versary’s skill and tools. As a result, physical security is, and will remain, a
race between the defender and the attacker.

(Fortunately, to date, we are not aware of a successful physical attack on
what we ended up building here.)

6.2.1 Penetration Resistance and Detection

Building on the earlier work, we use a grid of conductors monitored
by circuitry that can detect changes in the properties (open, shorts, changes in
conductivity) of the conductors. The conductors themselves are non-metallic
and closely resemble the material in which they are embedded—making dis-
covery, isolation, and manipulation more difficult. We arrange these grids in
several layers; the sensing circuitry can detect accidental connection between
layers as well as changes in an individual layer.

The sensing grids were made of flexible material and are wrapped around
and attached to the secure coprocessor package as if it were being gift-wrapped.
Connections to and from the secure coprocessor were made via a thin flexible
cable which is brought out between the folds in the sensing grids so that no
openings were left in the package. (Using a standard connector would leave
such openings.) After we wrapped the package, we embedded it in a potting
material. As mentioned above, this material closely resembles the material
of the conductors in the sensing grids. Besides making it harder to find the
conductors, this physical and chemical resemblance makes it nearly impossible
for an attacker to penetrate the potting without also affecting the conductors.
Then we enclosed the entire package in a grounded shield to reduce suscepti-
bility to electromagnetic interference and to reduce detectable electromagnetic
emanations.

6.2.2 Tamper Response

Upon detection of tamper, we zeroize the BBRAM and disable the rest of the
device by holding it in reset. The tamper detection/response circuitry is active
at all times, whether the coprocessor is powered or not—the detection/response
circuitry runs on the same battery that maintains the BBRAM when the unit is
unpowered.

Tamper can happen quickly. In order to erase quickly, we crowbar the SRAM
by switching its power connection to ground. At the same time, we force all
data, address and control lines to a high impedance state, in order to prevent
back-powering of the SRAM via those lines. (One engineer tells a story of
debugging a motherboard that worked almost, but not quite, correctly. It turns
out that the main CPU’s power pin was disconnected—but the CPU was deriving
enough power from its control lines to operate.)

Platform Architecture 77

We employ this technique—crowbar and tri-state—because it is simple, ef-
fective, and it does not depend on the CPU being sufficiently operational for
sufficiently long to overwrite the contents of the SRAM on tamper.

6.2.3 Other Physical Attacks
To prevent attacks based on manipulating the operating conditions, including

those that would make it difficult to respond to tamper and erase the secrets in
BBRAM, we added several additional sensors to the security circuitry to detect
and respond to changes in operating conditions.

As Section 3.5 discussed, for zeroization to be effective, certain environ-
mental conditions must be met. To prevent imprinting via low temperatures, a
temperature sensor in our device will cause the protection circuit to erase the
BBRAM if the temperature goes below a pre-set level. To prevent imprinting
and circuit disruption via ionizing radiation, our device also detects signifi-
cant amounts of ionizing radiation and triggers the tamper response if detected.
To prevent imprinting via long-time storage of the same bit in BBRAM, our
software periodically inverts this data. (Carrying out this countermeasure in
low-level firmware was tricky; we ended up using free-running counters to
produce a random bit.)

An adversary might also compromise security by causing incorrect opera-
tion through careful manipulation of various environmental parameters. As a
consequence, a device needs to detect and defend against such attacks. One
such environmental parameter is supply voltage, which we monitored for sev-
eral thresholds. For example, at each power-down, the voltage will go from an
acceptable level to a low voltage, then to no supply voltage. But the detection
and response circuitry needs to be always active—so at some point, it has to
switch over to battery operation. (A similar transition occurs at power-up.)
Whenever the voltage goes below the acceptable operating level of the CPU
and its associated circuitry, these components are all held in a reset state until
the voltage reaches the operating point. When the voltage reaches the operating
point, the circuitry is allowed to run. If the voltage exceeds the specified upper
limit for guaranteed correct operation, it is considered a tamper, and the tamper
circuitry is activated.

Another method by which correct operation can be compromised is by ma-
nipulating the clock signals that go to the coprocessor. To defend against these
sorts of problems, we use phase locked loops and independently generated in-
ternal clocks to prevent clock signals with missing or extra pulses, or ones that
are either too fast or slow. High temperatures can cause improper operation of
the device CPU, and even damage it. So, high temperatures cause the device
to be held in reset from the operational limit to the storage limit. Detection of
temperature above the storage limit is treated as a tamper event.

78 TRUSTED COMPUTING PLATFORMS

In the first generation model, operation time of the modular exponentiation
engine was correlated to its data, potentially enabling timing attacks (recall
Section 3.3.1). To protect against these, we drove the engine with software that
manually implemented blinding. In the second generation model, the engine
took constant time.

Many attack strategies emerged after our design, but the form factor of an
encapsulated multi-chip module enabled a solid design that resisted them. For
example, on-board power management resulted in no noticeable signal emerg-
ing in power consumption; the encapsulation provides a Faraday cage that
appears to resist EMF side-channels. (However, one never knows what news
tomorrow’s Slashdot will bring.)

6.3 The Source of Secrets
The previous section discussed how we erase device secrets upon tamper.

One might deduce that a natural consequence would be that “knowledge of
secrets” implies “device is real and untampered”. But for this conclusion to
hold, we need more premises:

the secrets were secret when they were first established;

the device was real and untampered when its secrets were established;

weakening of cryptography does not compromise the secrets;

operation of the device has not caused the secrets to be exposed.

This section discusses how we provide the first three properties. Section 6.4
will discuss how we provide the fourth.

6.3.1 Factory Initialization
As one might naturally suspect, an untampered device authenticates itself as

such using cryptographic secrets stored in secure memory. The primary secret
is the private half of an RSA or DSA key pair. (Chapter 7 elaborates on the use
of this private key.) Some symmetric-key secrets are also necessary for some
special cases, as Section 6.6.5 will discuss.

The device key pair is generated at device initialization. To minimize risk
of exposure, a device generates its own key pair internally, within the tamper-
protected environment and using seeds produced from the internal hardware
random number generator. The device holds its private key in secure BBRAM,
but exports its public key. An external Certificate Authority adds identifying
information about the device and its software configuration, signs a certificate
for this device, and returns the certificate to the device.

The device-specific symmetric keys are also generated internally at factory
initialization. Clearly, the CA must have some reason to believe that the de-

Platform Architecture 79

vice in question really is an authentic, untampered device. To address this
question—and avoid the risks of physical modification in the shipping channel
or at the customer site—we initialize the cards in the factory, as the last step
of manufacturing. Although factory initialization removes the risks associated
with insecure shipping and storage, it does introduce one substantial drawback:
the device must remain within the safe storage temperature range during the
shipping process. But when considering the point of initialization, a manufac-
turer faces a tradeoff between ease of distribution and security: we have chosen
security.

6.3.2 Field Operations
Regeneration. An initialized device has the ability to regenerate its key pair.
Regeneration frees a device from depending forever on one key pair, or key
length, or even cryptosystem. Performing regeneration atomically with other
actions, such as reloading the crypto code, also proves useful, as Chapter 7 will
discuss. For stronger forward integrity, implementations could combine this
technique with expiration dates—or even with forward-secure cryptographic
techniques.

To regenerate its key pair, a device does the following:

create a new key pair from internal randomness,

use the old private key to sign a transition certificate for the new public key,
including data such as the reason for the change, and

atomically complete the change, by deleting the old private key and making
the new pair and certificate “official.”

The current list of transition certificates, combined with the initial device cer-
tificate, certifies the current device private key.

Recertification. The CA for devices can also recertify the device, by atomi-
cally replacing the old certificate and possibly empty chain of transition certifi-
cates with a single new certificate. Clearly, it would be a good idea for the CA
to verify that the claimed public key really is the current public key of an un-
tampered device in the appropriate family. This technique can also frees the CA
from depending forever on a single key pair, key length, or even cryptosystem.

Revival. Scenarios arise where the tamper detection circuitry in a device has
zeroized its secrets, but the device is otherwise untampered. As discussed
above, certain environmental changes—such as cold storage or bungled battery
removal—trigger tamper response in our design, since otherwise these changes
would provide an avenue for undetected tamper. Such scenarios are arguably

80 TRUSTED COMPUTING PLATFORMS

inevitable in many tamper-response designs,since a device cannot easily wait
to see if a tamper attempt is successful before responding.

Satisfying an initial commercial constraint of “save hardware whenever pos-
sible” requires a way of reviving such a zeroized but otherwise untampered
device. However, such a revival procedure introduces a significant vulnera-
bility: how do we distinguish between zeroized but untampered device, and a
tampered device?

How do we perform this authentication? As discussed earlier, we cannot
rely on physical evidence to determine whether a given card is untampered,
since we fear that a dedicated, well-funded adversary could modify a device
(e.g., by changing the internal FLASH components) and then re-assemble it
sufficiently well that it passes direct physical inspection. Indeed, the need for
factory-initialization was driven by this concern: We can only rely on secrets in
tamper-protected secure memory to distinguish a real device from a tampered
device.

The problem is basically unsolvable—how can we distinguish an untam-
pered but zeroized card from a tampered reconstruction, when, by definition,
every aspect of the untampered card is visible to a dedicated adversary? To
accommodate both the commercial and security constraints, our architecture
compromises.

First, we make revival possible. We provide a way for a trusted authority to
revive an allegedly untampered but zeroized card, based on authentication
via non-volatile, non-zeroizable “secrets” stored inside a particular device
component. Clearly, this technique is risky, since a dedicated adversary can
obtain a device’s revival secrets via destructive analysis of the device, and
then build a fake device that can spoof the revival authority.

We also make revival safe. To accommodate the above risk, we force revival
to atomically destroy all secrets within a device, and to leave it without
a certified private key. A trusted CA must then re-initialize the device,
before the device can “prove” itself genuine to other relying parties. This
initialization requires the creation of a new device certificate, which provides
the CA with an avenue to explicitly indicate the card has been revived (e.g.,
“if it produces signatures that verify against Device Public Key N , then
it is allegedly a real, untampered device that has undergone revival—so
beware”). Thus, we prevent a device that has undergone this risky procedure
from impersonating an untampered device that has never been zeroized and
revived.

Furthermore, given the difficulty of effectively authenticating an untampered
but zeroized card, and the potential risks of a mistake, the support team for the
commercial product has decided not to support this option in practice.

Platform Architecture 81

6.3.3 Trusting the Manufacturer
A discussion of untamperedness leads to the question: why should the user

trust the manufacturer of the device? Considering this question gives rise to
three sets of issues.

Contents. Does the black box really contain the advertised circuits and
firmware? The paranoid user can verify this probabilistically by physically
opening and examining a number of devices. The necessary design criteria
and object code listings could be made available to customers under special
contract.

CA Private Key. Does the factory CA ever certify bogus devices? Such
abuse is a risk with any public key hierarchy. But, the paranoid user can
always establish their own key hierarchy, and then design applications that
accept as genuine only those devices with a secondary certificate from this
alternate authority.

Initialization. Was the device actually initialized in the advertised man-
ner? Given the control a manufacturer might have, it is hard to see how we
can conclusively establish that the initialization secrets in a card are indeed
relics of the execution of the correct code. However, the cut-and-examine
approach above can convince a paranoid user that the key creation and man-
agement software in an already initialized device is genuine. This assurance,
coupled with the regeneration technique above, provides a solution for the
paranoid user: causing their device to regenerate after shipment gives it a
new private key that must have been produced in the advertised safe fashion.

6.4 Software Threats
Section 6.2 discussed how we ensure that the core secrets are zeroized upon

physical attack, and Section 6.3 discussed how we ensure that they were secret
to begin with. However, these techniques still leave an exposure: did the device
secrets remain secret throughout operation?

For example, suppose a few months after release, some penetration specialists
discover a hole in the OS that allows untrusted user code to execute with full
supervisor privilege. Our code loading protocol (Section 6.6) allows us to ship
out a patch, and a device installing this patch can sign a receipt with its private
key. One might suspect verifying this signature would imply the hole has
been patched in that device. Unfortunately, this conclusion would be wrong:
a hole that allows untrusted code full privileges would also grant it access to
the private key—that is, without additional hardware countermeasures. This
section discusses the countermeasures we use.

82 TRUSTED COMPUTING PLATFORMS

6.4.1 Software Threat Model
This risk is particularly dire in light of the commercial constraints of multiple

layers of complex software, from multiple authorities, remotely installed and
updated in hostile environments. History shows that complex systems are,
quite often, permeable. Consequently, we address this risk by assuming that all
rewritable software in the device may behave arbitrarily badly.

Drawing our defense boundary here frees us from the quagmire of having
low-level Miniboot code evaluate incoming code for safety. It also accommo-
dates the wishes of system software designers who want full access to Ring 0
(that is, “kernel mode”; maximal privileges) in the underlying Intel x86 CPU
architecture.

Declaring this assumption often raises objections from systems program-
mers. We pro-actively raise some counterarguments. First, although all code
loaded into the device is somehow “controlled,” we need to accommodate the
pessimistic view that “signed code” means, at best, good intentions. Second,
although an OS typically provides two levels of privilege, history is full of
examples where low-level programs usurp higher-level privileges. Finally, as
implementers ourselves, we need to acknowledge the very real possibility of
error by accommodating mistakes as well as malice.

6.4.2 Hardware Access Locks
In order to limit the abilities of rogue but privileged software, we used hard-

ware locks: independent circuitry that restricts the activities of code executing
on the main CPU. We chose to use a simple hardware approach for several
reasons, including:

We cannot rely on the device operating system, since we do not know what
it will be—and a corrupt or faulty OS might be what we need to defend
against.

We cannot rely on the protection rings of the device CPU, because the
rewritable OS and Miniboot layers require maximal CPU privilege.

Figure 5.1 (in Section 5.4) shows how the hardware locks fit into the overall
design: the locks are independent devices that can interact with the main CPU,
but control access to the FLASH and to BBRAM.

However, this approach raises a problem. Critical memory needs protection
from bad code. How can our hardware protection—which needs to be simple,
if we are to get it right the first time—distinguish between good code and bad
code?

We considered and discarded two options:

False Start: Good code could write a password to the lock.

Platform Architecture 83

Although this approach simplifies the necessary circuitry, we had doubts
about effectively hiding the passwords from rogue software.

False Start: The lock determines when good code is executing by moni-
toring the address bus during instruction fetches.

This approach greatly complicates the circuitry. We felt that correct imple-
mentation would be difficult, given the complexities of instruction fetching
in modern CPUs, and the subtleties involved in detecting not just the address
of an instruction, but the context in which it is executed. For example, it
is not sufficient merely to recognize that a sequence of instructions came
from the address range for privileged code; the locks would have to further
distinguish between several similar scenarios:

these instructions, executing as privileged code,

these instructions, executing as a subroutine called by unprivileged code;

these instructions, executing as privileged code, but with a sabotaged
interrupt table.

Solution: Sequence-Based Ratchet. We finally developed a lock approach
based on the observation that (because our TCP is a multi-chip module, with
physical encapsulation that limits external interaction, like triggering reset, to
well-defined and well-regulated channels) reset causes all device circuitry return
to a known state—and forces the device CPU to begin execution from a fixed
address in ROM: known, trusted, permanent code. As execution proceeds, it
passes through a non-repeating sequence of code blocks with different levels
of trust, permanence, and privilege requirements.

Reset starts Miniboot 0, which resides in ROM.

Miniboot 0 passes control to Miniboot 1, and never executes again (until the
next reboot).

Miniboot 1 passes control to the OS, and never executes again.

The OS may perform some start-up code.

While retaining supervisor control, the OS may then execute application
code.

The application (executing under control of the OS) may itself do some
start-up work, then potentially incur dependence on less trusted code or
input.

Our lock design models this sequence with what I called a trust ratchet, repre-
sented as a nonnegative integer. A small microcontroller stores the the ratchet

84 TRUSTED COMPUTING PLATFORMS

value in a register. Upon hardware reset, the microcontroller resets the ratchet
to 0; through interaction with the device CPU, the microcontroller can advance
the ratchet—but can never turn it back. As each block finishes its execution,
it advances the ratchet to the next appropriate value. Our implementation also
enforces a maximum ratchet value, and ensures that ratchet cannot be advanced
beyond this value. models the execution sequence. The microcontroller then
grants or refuses memory accesses, depending on the current ratchet value.

Decreasing Trust. The effectiveness of this trust ratchet critically depends on
two facts:

The code blocks can be organized into a hierarchy of decreasing privilege
levels (e.g., like classical work in protection rings or lattice models of in-
formation flow).

In our software architecture, these privilege levels strictly decrease in real
time after reset.

This time sequencing, coupled with the independence of the lock hardware from
the CPU and the fact that the hardware design and its physical encapsulation
forces any reset of the locks to also reset the CPU, give the ratchet its power:

The only way to get the most-privileged level (Ratchet 0) is to force a
hardware reset of the entire system, and begin executing Miniboot 0 from a
hardwired address in ROM, in a known state.

The only way to get a non-maximal privilege level (Ratchet N , for N > 0)
is to be passed control by code executing at an earlier, higher-privileged
ratchet level.

Neither rogue software nor any other software can turn the ratchet back to
an earlier, higher-privileged level, short of resetting the entire system.

The only avenue for rogue software at Ratchet N to steal the privileges of ratchet
K < N would be to somehow alter the software that executes at ratchet K or
earlier. However, as Section 6.5 will show, we use the ratchet to prevent these
attacks as well.

Generalizations. Although this discussion used a simple total order on ratchet
values, nothing prevents using a partial order. Indeed, as we discuss later, our
initial implementation of the microcontroller firmware did just that, in order to
allow for some avenues for future expansion. (Such expansion never happened,
though.)

Platform Architecture 85

6.4.3 Privacy and Integrity of Secrets
The hardware locks enable us to address the challenge: how do we keep rogue

software from stealing or modifying critical authentication secrets? We do this
by establishing protected pages: regions of battery-backed RAM which are
locked once the ratchet advances beyond a certain level. (The term “page” here
refers solely to a particular region of BBRAM—and not to special components
of any particular CPU or OS memory architecture.) The hardware locks can
then permit or deny write access to each of these pages. Rogue code might still
issue a read or write to that address, but the memory device itself will never see
it.

Table 6.1 illustrates the access policy we chose: each ratchet level R (for
has its own protected page, with the property that page P can only

be read or written in ratchet level
We use the term lockable BBRAM (LBBRAM) to refer to the portion of

BBRAM consisting of the protected pages. (As with all BBRAM in the device,
these regions preserve their contents across periods of no power, but zeroize
their contents upon tamper.) We ended up using these pages for outbound
authentication (Chapter 7); page 0 also holds some secrets used for ROM-based
loading (Section 6.6). We partition the remainder of BBRAM into two regions:
one belonging to the OS exclusively, and one belonging to the application.
Within this nonlockable BBRAM, we expect the OS to protect its own data
from the application’s.

6.5 Code Integrity
The previous sections presented how our architecture ensures that secrets

remain accessible only to allegedly trusted code, executing on an untampered
device. To be effective, our architecture must integrate these defenses with
techniques to ensure that this executing code really is trusted.

This section presents how we address the problem of code integrity:

86 TRUSTED COMPUTING PLATFORMS

Section 6.5.1 and Section 6.5.2 describe how we defend against code from
being formally modified, except through the official code loading procedure.

Section 6.5.3 and Section 6.5.4 describe how we defend against modifica-
tions due to other types of failures.

Section 6.5.5 summarizes how we knit these techniques together to ensure
the device securely boots.

6.5.1 Loading and Cryptography
We confine to Miniboot the tasks of deciding and carrying out alteration of

code layers. Although previous work considered a hierarchical approach to
loading, our commercial requirements—multiple-layer software, controlled by
mutually suspicious authorities, updated in the hostile field, while sometimes
preserving state—led to trust scenarios that were simplified by centralizing trust
management.

Miniboot 1 (in rewritable FLASH) contains code to support public key cryp-
tography and hashing, and carries out the primary code installation and update
tasks—which include updating itself.

Miniboot 0 (in boot-block ROM) contains primitive code to perform DES
using the DES-support hardware, and uses secret-key authentication to perform
the emergency operations necessary to repair a device whose Miniboot 1 does
not function.

6.5.2 Protection against Malice
As experience in vulnerability analysis reveals, practice often deviates from

policy. Without additional countermeasures, the policy of “Miniboot is in
charge of installing and updating all code layers” does not necessarily imply
that “the contents of code layers are always changed in accordance with the
design of Miniboot, as installed.” For example:

Without sufficient countermeasures, malicious code might itself rewrite code
layers.

Without sufficient countermeasures, malicious code might rewrite the Mini-
boot 1 code layer, and cause Miniboot to incorrectly “maintain” other layers.

To ensure that practice meets policy, we use the trust ratchet (Section 6.4)
to guard rewriting of the code layers in rewritable FLASH. We group sets of
FLASH sectors into protected segments, one for each rewritable layer of code.
(As with “protected page,” the term “segment” is used here solely to denote
to these sets of FLASH sectors—and not to special components of a CPU or
OS memory architecture.) The hardware locks can then permit or deny write

Platform Architecture 87

access to each of these segments—rogue code might still issue a write to that
address, but the memory device itself will never see it.

Table 6.2 illustrates the write policy we chose for protected FLASH. We
could have limited Ratchet 0 write-access to Segment 1 alone, since (in practice)
Miniboot 0 only writes Miniboot 1 . However, it makes little security sense to
withhold privileges from earlier, higher-trust ratchet levels—since the earlier-
level code could always usurp these privileges by advancing the ratchet without
passing control.

As a consequence of applying hardware locks to FLASH, malicious code can-
not rewrite code layers unless it modifies Miniboot 1. But this is not possible—in
order to modify Miniboot 1, an adversary has to either alter ROM, or already
have altered Miniboot 1. Note these safeguards apply only in the realm of at-
tacks that do not result in zeroizing the device. An attacker could bypass all
these defenses by opening the device and replacing the FLASH components—
but we assume that the defenses of Section 6.2 would ensure that such an attack
would trigger tamper detection and response.

In order to permit changing to a hierarchical approach without changing the
hardware design, the implemented lock firmware permits Ratchet 1 to advance
instead to a Ratchet that acts like Ratchet 2, but permits rewriting of Seg-
ment 3. Essentially, our trust ratchet, as implemented, already ranged over a
non-total partial order.

6.5.3 Protection against Reburn Failure
In our current hardware implementation, multiple FLASH sectors make up

one protected segment. Nevertheless, we erase and rewrite each segment as a
whole, in order to simplify data structures and to accommodate future hardware
with larger sectors.

This decision leaves us open to a significant risk: a failure or power-down
might occur during the non-zero time interval between the time Miniboot starts
erasing a code layer to be rewritten, and the time that the rewrite successfully
completes. This risk gets even more interesting, in light of the fact that rewrite

88 TRUSTED COMPUTING PLATFORMS

of a code layer may also involve changes to other state variables and LBBRAM
fields.

When crafting the design and implementation, we followed the rule that the
system must remain in a safe state no matter what interruptions occur during
operations. As we discussed back in Section 3.2.5, this principle is especially
relevant to the process of erasing and reburning software resident in FLASH.

Since Miniboot 1 carries out loading and contains the public key crypto
support, we allocate two regions for it in FLASH Segment 1, so that the
old copy exists and is usable up until the new copy has been successfully
installed. This approach permits using Miniboot 1 for public-key-based
recovery from failures during Miniboot 1 updates.

When reburning the OS or an application, we temporarily demote its state,
so that on the next reset after a failed reburn, Miniboot recognizes that the
FLASH layer is now unreliable, and cleans up appropriately.

For more complex transitions, we extend this approach: all changes atomically
succeed together, or fail either back to the original state, or to a safe intermediate
failure state.

6.5.4 Protection against Storage Errors
Hardware locks on FLASH protect the code layers from being rewritten

maliciously. However, bits in FLASH devices (even in boot block ROM) can
change without being formally rewritten—due to the effects of random hardware
errors in these bits themselves.

To protect against spurious errors, we include a 64-bit DES-based MAC with
each code layer. Miniboot 0 checks itself before proceeding; Miniboot 0 checks
Miniboot 1 before passing control; Miniboot 1 checks the remaining segments.
The use of a 64-bit MAC from CBC-DES was chosen purely for engineering
reasons: it gave a better chance at detecting errors over datasets the size of
the protected segments than a single 32-bit CRC, and was easier to implement
even in ROM, given the presence of DES hardware, than more complex CRC
schemes.

We reiterate that we do not rely solely on single-DES to protect code integrity.
Rather, our use of DES as a checksum is solely to protect against random storage
errors in a write-protected FLASH segment. An adversary might exhaustively
find other executables that also match the DES MAC of the correct code; but in
order to do anything with these executables, the adversary must get write-access
to that FLASH segment—in which case, the adversary also has write-access to
the checksum, so his exhaustive search was unnecessary.

Platform Architecture 89

6.5.5 Secure Bootstrapping
To ensure secure bootstrapping, we use several techniques together:

The hardware locks on FLASH keep rogue code from altering Miniboot or
other code layers.

The loading protocols (Section 6.6) keep Miniboot from burning adversary
code into FLASH.

The checksums keep the device from executing code that has randomly
changed.

If an adversary can cause (e.g., through radiation) extensive, deliberate changes
to a FLASH layer so that it still satisfies the checksum it stores, then he can
defeat these countermeasures. However, we believe that the physical defenses
of Section 6.2 would keep such an attack from being successful:

The physical shielding in the device would make it nearly impossible to
produce such carefully focused radiation.

Radiation sufficiently strong to alter bits should also trigger tamper response.

Consequently, securely bootstrapping a custom-designed, tamper-protected de-
vice is easier than the general problem of securely bootstrapping a general-
purpose, exposed machine.

Execution Sequence. Our boot sequence follows from a common-sense as-
sembly of our basic techniques. Hardware reset forces execution to begin in
Miniboot 0 in ROM. Miniboot 0 begins with Power-on Self Test (POST) 0,
which evaluates the hardware required for the rest of Miniboot 0 to execute.
Miniboot 0 verifies the MACs for itself and Miniboot 1. If an external party
presents an alleged command for Miniboot 0 (e.g., to repair Miniboot 1), Mini-
boot 0 will evaluate and respond to the request, then halt. I Layer 1 is not
reliable, Miniboot 0 will also halt. Otherwise, Miniboot 0 advances the trust
ratchet to 1, and jumps to Miniboot 1.

Except for some minor, non-secret device-driver parameters, no DRAM state
is saved across the Miniboot 0 to Miniboot 1 transition. (In either Miniboot, any
error or stateful change causes it to halt, in order to simplify analysis. Interrupts
are disabled.)

Miniboot 1 begins with POST 1, which evaluates the remainder of the hard-
ware. Miniboot 1 also verifies MACs for Layer 2 and Layer 3. If an external
party presents an alleged command for Miniboot 1 (e.g.,to reload Layer 2),
Miniboot 1 will evaluate and respond to the request, then halt. Otherwise Mini-
boot 1 advances the trust ratchet to 2, and if Layer 2 is reliable jumps to Layer
2, the OS.

90 TRUSTED COMPUTING PLATFORMS

The OS then proceeds with its bootstrap. If the OS needs to protect data
from an application that may find holes in the OS, the OS can advance the
trust ratchet to 3 before invoking Layer 3 code. Similarly, the application can
advance the ratchet further, if it needs to protect its private data. (Chapter 7 will
discuss some OS-level uses we ended up making of the ratchet.)

6.6 Code Loading
One of the last remaining pieces of our architecture is the secure installation

and update of trusted code.
In order to accommodate our overall goal of enabling widespread develop-

ment and deployment of secure coprocessor applications, we needed to consider
the practical aspects of this process. We review the principal constraints:

Shipped empty. In order to minimize variations of the hardware and to
accommodate US export regulations, it was decided that all devices would
leave the factory with only the minimal software configuration (Miniboot
only). The manufacturer does not know at ship time (and may perhaps never
know later) where a particular device is going, and what OS and application
software will be installed on it.

Impersonal broadcast. To simplify the process of distributing code, the
code-loading protocol should permit the process to be one-round (from au-
thority to device), be impersonal (the authority does not need to customize
the load for each device), and have the ability to be carried out on a public
network.

Updatable. As discussed earlier, we needed to be able to update code
already installed in devices.

Minimal disruption. An emphatic customer requirement was that, when-
ever reasonable and desired, application state be preserved across updates.

Recoverable. We needed to be able to recover an untampered device from
failures in its rewritable software—which may include malicious or acci-
dental bugs in the code, as well as failures in the FLASH storage of the code
or interruption of an update.

Loss of cryptography. The complexity of public key cryptography and
hashing code forced it to reside in a rewritable FLASH layer—so the recov-
erability constraint also implies secure recoverability without these abilities.

Mutually suspicious, independent authorities. In any particular device,
the software layers may be controlled by different authorities who may not
trust each other, and may have different opinions and strategies for software
update.

Platform Architecture 91

Figure 6.1. We organized the authorities over software layers (over all devices) into a tree; each
authority selects and names the authorities who can control the layer above him.

Hostile environments. We can make no assumptions about the user ma-
chine itself, or the existence of trusted couriers or trusted security officers.

To address these constraints, we developed and followed some guidelines:

We make sure that Miniboot keeps its integrity, and that only Miniboot can
change the other layers.

We ensure that the appropriate authorities can obtain and retain control over
their layers—despite changes to underlying, higher-trust layers.

We use public key cryptography whenever possible.

Below, Section 6.6.1 outlines who can be in charge of installing and changing
code. Section 6.6.2 discusses how a device can authenticate them. Section 6.6.3
discusses how an “empty” card in the hostile field can learn who is in charge
of its code layers. Section 6.6.4 and Section 6.6.5 discuss how the appropriate
authorities can authorize code installations and updates.

process with a simple example.

6.6.1 Authorities
As Figure 6.1 illustrates, we organized software authorities—parties who

might authorize the loading of new software—into a tree. The root is the sole
owner of Miniboot; the next generation are the authorities of different operating
systems; the next are the authorities over the various applications that run on
top of these operating systems. We stress that these parties are external entities,
and apply to the entire family of devices, not just one.

Hierarchy in software architecture implies dependence of software. The
correctness and security of the application layer depends on the correctness and
security of the operating system, which in turn depends on Miniboot 1, which
in turn depends on Miniboot 0. (This relation was implied by the decreasing
privileges of the trust ratchet.)

92 TRUSTED COMPUTING PLATFORMS

Similarly, hierarchy in the authority tree implies dominance: the authority
over Miniboot dominates all operating system authorities; the authority over a
particular operating system dominates the authorities over all applications for
that operating system.

6.6.2 Authenticating the Authorities
Public key authentication. Wherever possible, a device uses a public key
signature to authenticate a message allegedly from one of its code authorities.
The public key against which this message is verified is stored in the FLASH
segment for that code layer, along with the code and other parameters (see
Figure 6.2).

Using public key signatures makes it possible to accommodate the “imper-
sonal broadcast” constraint. Storing an authority’s public key along with the
code in the FLASH layer owned by that authority, enables the authority to
change its key pair over time, at its own discretion.

However, effectively verifying such a signature requires two things:

the code layer is already loaded and still has integrity (so the device actually
knows the public key to use); and

Miniboot 1 still functions (so the device knows. what to do with this public
key).

These facts create the need for two styles of loading:

ordinary loading, when these conditions both hold; and

emergency loading, when at least one fails.

Secret-key authentication.. The lack of public key cryptography forces the
device to use a secret-key handshake to authenticate communications from the
Miniboot 0 authority. The shared secrets are stored in Protected Page 0, in
LBBRAM.

Such a scheme requires that the authority share these secrets. Our scheme
reconciles this need with the no-databases requirement by having the device
itself store a signed, encrypted message from the authority to itself. During
factory initialization, the device itself generates the secrets and encrypts this
message; the authority signs the message and returns it to the device for safe-
keeping. During authentication, the device returns the message to the authority.

6.6.3 Ownership
Clearly, our architecture has to accommodate the fact that each rewritable

code layer may have contents that are either reliable or unreliable. However, in
order to provided the necessary configuration flexibility, the OS and application

Platform Architecture 93

Figure 6.2. A layer contains code, the public key of the authority over that layer, other identifying
parameters, and an integrity check.

Figure 6.3. The OS and applications layers may be owned or unowned; an owned layer may
also be reliable, or even reliable and runnable.

layers each have additional parameters, reflecting which external authority is
in charge of them.

Our architecture addressed this need by giving each of these layers the state
space sketched in Figure 6.3:

The code layer may be owned or unowned.

The contents of an owned code layer may be reliable: containing useful data.
However, some owned layers—and all unowned ones—are unreliable.

A reliable code layer may actually be runnable: in a position to execute.
However, some reliable layers may be unrunnable, for various reasons.
Furthermore, all unreliable layers are unrunnable.

This code is stored in EEPROM fields in the hardware lock, write-protected
beyond Ratchet 1.

For 0 < N < 3, the authority over Layer N in a device can issue a Mini-
boot command giving an unowned Layer N + 1 to a particular authority. For

the authority over Layer N can issue a command surrender-
ing ownership—but the device can evaluate this command only if Layer N is
currently reliable. (Otherwise, the device does not know the necessary public
key.)

6.6.4 Ordinary Loading
Code Layer N , for is rewritable. Under ordinary circumstances,

the authority over Layer N can update the code in that layer by issuing an update
command signed by that authority’s private key. This command includes the
new code, a new public key for that authority (which could be the same as the
old one, per that authority’s key policy), and target information to identify the

94 TRUSTED COMPUTING PLATFORMS

Figure 6.4. An ordinary load command for Layer N consists of the new code, new public key,
and trust parameters, signed by the authority over that layer; this signature is evaluated against
the public key currently stored in that layer.

devices for which this command is valid. The device (using Miniboot 1) then
verifies this signature directly against the public key currently stored in that
layer. Figure 6.4 sketches this structure.

Target. The target data included with all command signatures allows an au-
thority to ensure that their command applies only in an appropriate trusted
environment. An untampered device will accept the signature as valid only if
the device is a member of this set. The authority can verify that the load “took”
via a signed receipt from Miniboot (see Chapter 7).

For example, suppose an application developer determines that version 2 of
a particular OS has a serious security vulnerability. Target data permits this
developer to ensure that the untampered devices that will load their application
will have version 3 or greater of that operating system.

Underlying Updates. The OS has complete control over the application, and
complete access to its secrets; Miniboot has complete control over both the OS
and the application. This control creates the potential for serious backdoors.
For example, can the OS authority trust that the Miniboot authority will always
ship updates that are both secure and compatible? Can the application authority
trust that the OS authority uses appropriate safeguards and policy to protect the
private key he or she uses to authorize software upgrades?

To address these risks, we permit Authority N to include, when loading its
code, trust parameters expressing how it feels about future changes to each
rewritable layer K < N . In our initial implementation, these parameters only
had three values:

always trust

never trust, or

trust only if the update command for K is countersigned by Authority N .

Platform Architecture 95

Figure 6.5. An ordinary load command for Layer N can include an optional countersignature
by the authority over Layer M > N .

Figure 6.6. Ordinary loading of code into a layer is directly authenticated by the authority
over that layer (dashed arrows); emergency loading is directly authenticated by the authority
underlying that layer (solid arrows).

(Although we had intended for future expansion, these options turned out to
be sufficient—in fact, perhaps more than sufficient; just “always” and “never”
probably would have sufficed.)

As a consequence, an ordinary load of Layer N can be accompanied by,
for a countersignature from Authority M , expressing Authority
M ’s opinion about compatibility of that load with some Layer M that he might
control. Figure 6.5 sketches this structure.

Update Policy. Trust parameters and countersignatures help us balance the
requirements to support hot updates, against the risks of dominant authorities
replacing underlying code.

An ordinary reload of Layer N , if successful, preserves the current secrets
of Layer N and leaves Layer N runnable.

For an ordinary reload of Layer N , if successful, preserves
the current secrets of Layer M if and only if Layer M had been reliable, and
either:

its trust parameter for N was “always,” or

its trust parameter for N was countersigned, and a valid countersignature
from M was included.

96 TRUSTED COMPUTING PLATFORMS

Otherwise, the secrets of M are atomically destroyed with the update.
An ordinary load of a layer always preserves that layer’s secrets, because

presumably an authority can trust their own private key.

6.6.5 Emergency Loading
As observed earlier, evaluating Authority N ’s signature on a command to

update Layer N requires that Layer N have reliable contents. Many scenarios
arise where Layer N will not be reliable—including the initial load of the
OS and application in newly shipped cards, and repair of these layers after an
interruption during reburn.

Consequently, we require an emergency method to load code into a layer
without using the contents of that layer. As Figure 6.6 shows, an emergency
load command for LayerN must be authenticated by LayerN – 1. As discussed
below, our architecture includes countermeasures to eliminate the potential
backdoors this indirection introduces.

OS, Application Layers. To emergency load the OS or Application layers,
the authority signs a command similar to the ordinary load, but the authority un-
derneath them signs a statement attesting to the public key. Figure 6.7 illustrates
this. The device evaluates the signature on this emergency certificate against
the public key in the underlying segment, then evaluates the main signature
against the public key in the certificate.

This two-step process facilitates software distribution: the emergency au-
thority can sign such a certificate once, when the next-level authority first joins
the tree. This process also isolates the code and activities of the next-level
authority from the underlying authority.

Risks of Siblings. Burning a segment without using the contents of that seg-
ment introduces a problem: keeping an emergency load of one authority’s
software from overwriting installed software from a sibling authority.

We addressed this risk by giving each authority an ownerID, assigned by
the N – 1 authority when establishing ownership for N , and stored outside the
code layer. The public key certificate later used in the emergency load of N
specifies the particular ownerID, which the device checks.

Emergency Reloading of Miniboot. Even though we mirror Miniboot 1,
recoverability still required that we have a way of burning it without using it,
in order to recover from emergencies when the Miniboot 1 code layer does not
function.

Since we must use ROM only and not Miniboot 1, we could not use public key
cryptography (management decision). Instead, we use mutual authentication

Platform Architecture 97

Figure 6.7. An emergency load command for Layer 2 or Layer 3 consists of the new code, new
public key for the authority over that layer, and this authority’s trust policy for future burns, all
signed by the authority over that layer. However, since this is an “emergency,” the device cannot
assume it knows the public key for that authority. Consequently, the command also includes an
emergency certificate signed by the authority over the underlying layer. The main signature is
evaluated against the public key in the certificate; the certificate signature is evaluated against
the public key stored in the underlying layer.

between the device and the Miniboot 0 authority, based on the device-specific
secret keys discussed earlier.

Closing the Backdoors. Emergency loading introduces the potential for back-
doors, since reloading Layer N does not require the participation of the authority
over that segment. For example, an OS authority could, by malice or error, put
anyone’s public key in the emergency certificate for a particular application
authority.

Since the device cannot really be sure that an emergency load for Layer N
really came from the genuine Authority N , Miniboot enforces two precautions:

It erases the current Layer N secrets but leaves the segment runnable from
this clean start (since the alleged owner trusts it).

It erases all secrets belonging to later layers, and leaves them unrunnable
(since their owners cannot directly express trust of this new load).

These actions take place atomically, as part of a successful emergency load.

6.7 Putting it All Together
This architecture establishes individual commands for Authority N to:

98 TRUSTED COMPUTING PLATFORMS

establish owner of Layer N + 1

attest to the public key of that owner

install and update code in Layer N ,

express opinions about the trustworthiness of future changes to Layer K ,
for K < N .

Except for emergency repairs to Miniboot 1, all these commands are authen-
ticated via public key signatures, can occur over a public network, and can be
restricted to particular devices in particular configurations.

We retain a layer’s secrets in BBRAM/LBBRAM only while we can contin-
uously maintain an environment for that layer that its owner trusts. We must be
able to verify this trust a priori, via public key cryptography.

We illustrate how this architecture supports flexible code development with
a simple example. Suppose Alice is in charge of Miniboot 1, and Bob wants to
become a Layer 2 owner, in order to develop and release Layer 2 software on
some cards. Bob generates his key pair, and gives a copy of his public key to
Alice. Alice then does three things for Bob:

She assigns Bob a 2-byte ownerID value that distinguishes him among all
the other children of Alice

She signs an “Establish Owner 2” command for Bob.

She signs an “Emergency Signature” for an “Emergency Burn 2” saying
that Owner 2 Bob has that public key.

Bob then goes away, writes his code, prepares the remainder of his “Emer-
gency Burn 2” command, and attaches the signature from Alice.

Now, suppose customer Carol wants to load Bob’s program into Layer 2 on
her card. She first buys a virgin device which has an unowned Layer 2, but
has Miniboot 1 and Alice’s public key in Layer 1 . Carol gets from Bob his
“Establish Owner 2” and “Emergency Burn 2” command, and plays them into
her virgin card via Miniboot 1. It verifies Alice’s signatures and accepts them.
Layer 2 in Carol’s card is now owned by Bob, and contains Bob’s Program and
Bob’s Public key.

If Bob wants to update his code and/or key pair, he simply prepares an
“Ordinary Burn 2” command, and transmits it to Carol’s card. Carol’s card
checks his signature on the update against the public key it has already stored
for him.

Note that Bob never exposes to Alice his private key, his code, his pattern
of updates, or the identity of his customers. Furthermore, if Bonnie is another
Layer 2 developer, she shares no secrets with Bob, and updates for Bonnie’s
software will not be accepted by cards owned by Bob’s.

Platform Architecture 99

The architecture also support other variations in the installation/development
process; for example, maybe Bob buys the cards himself, configures them, then
ships them to Carol.

The case for Layer 3 developers is similar.

6.8 What’s Next
Chapter 7 will discuss how we used this architecture to enable an application

running on an untampered TCP to prove it is the “real thing, doing the right
thing.”

Chapter 8 will expand on the security properties it provided, and how we
formalized and evaluated them.

6.9 Further Reading
This chapter was based in part on my 1999 Computer Networks paper [SW99]:

Section 6.1 through Section 6.7 on Section 3 through Section 9, respectively.
As noted earlier, the physical security architecture of Section 6.2 was primarily
the work of Steve Weingart.

Chapter 7

OUTBOUND AUTHENTICATION

Physical security, maintaining secrets, and installing code do not by them-
selves enable solutions to the problems we laid out; the code safely residing in
this tamper-protected environment needs to be able to prove who it is to remote
parties. This chapter will discuss this outbound authentication issue, and the
theoretical framework I developed to reason about the problem of how to en-
able coprocessor applications to participate as full-fledged entities in distributed
cryptographic protocols.

This work represented evolution in thinking about TCPs. What’s important
was not secrecy of code going into the TCP, but the ability of a relying party to
tell what’s there. However, as the design work proceeded, a further refinement
is emerging: what’s important is not so much the names of all the elements in
the code configuration, but rather whether the relying party should trust it.

Section 7.1 introduces the problem. Section 7.2 presents the theoretical
underpinnings, and Section 7.3 discusses the implementation.

7.1 Problem
Using TCPs to secure distributed computation requires outbound authentica-

tion (OA): the ability of coprocessor applications to authenticate themselves to
remote parties. Code downloading loses much of its effect if one cannot easily
authenticate the entity that results! (Gasser et al provide an early considera-
tion of this problem in the settings of a general distributed system architecture
[GGKL89].)

Merely configuring the coprocessor platform as the appropriate entity (e.g.,
a rights box, a wallet, an auction marketplace) does not suffice in general. A
signed statement about the configuration also does not suffice. For maximal
effectiveness, the platform should enable the entity itself to have authenticated
key pairs and to engage in protocols with any party on the Internet: so that

102 TRUSTED COMPUTING PLATFORMS

only that particular trusted auction marketplace, following the trusted rules, is
able to receive the encrypted strategy from a remote client; so that only that
particular trusted rights box, following the trusted rules, is able to receive the
object and the rights policy it should enforce.

In theory, solutions where the entity does not possess its own key pair but
makes use of some other service are also possible. We did not consider them
for several reasons. First, having one’s own key pair is the universal building
block for the main body of distributed security protocols—relying parties draw
conclusions based on whether one proves knowledge of a private key. By
providing each entity its own key pair, we reduce to barriers to using such
protocols with TCP-resident entities. Furthermore, having many entities share
a key would overly complicate the API for key usage, and make it harder to
have confidence that the design and implementation did not hide bugs.

7.1.1 The Basic Problem
A relying party needs to conclude that a particular key pair really belongs

to a particular software entity within a particular untampered platform. As
Chapter 5 and Chapter 6 discussed, design and production constraints led to a
nontrivial set of software entities in a coprocessor at any one time, and in any
one coprocessor over time. For our TCP—and for computation in general—
relying parties tend to trust some of these entities and not others. Software
and hardware structure can introduce further dependencies that might affect the
conclusions relying parties would reach if they knew these dependencies. For
example, if a TCP permitted multiple concurrent applications, some of these
were hostile, and the OS (through oversight) permitted hostile applications to
subvert other ones, then a relying party might want to know additional details
about the software configuration surrounding a particular application instance.
(“Might someone I do not trust have been in the box at the same time?”)

Furthermore, we needed to accommodate a multiplicity of trust sets (different
parties have different views), as well as the dynamic nature of any one party’s
trust set over time. This background sets the stage for the basic problem: how
should the device generate, certify, change, store, and delete private keys, so
that relying parties can draw those conclusions, and only those conclusions,
that are consistent with their trust set?

7.1.2 Authentication Approach
As Chapter 5 discussed, another business constraint we had was that the

only guaranteed contact we (as the manufacturer) would have with a TCP was
at manufacture time. In particular, we could assume no audits or database of
TCP-specific data (secret or otherwise), nor provide any online services to cards
once they left the factory. This constraint naturally suggested the use of public

Outbound Authentication 103

key cryptography for authentication, both inbound (from the outside world into
the TCP) and outbound (from inside the TCP back into the outside world).
This choice separates TCPs from relying parties and frees the manufacturer
from having to track any association of particular platforms with their ultimate
location, users, and applications.

Chapter 6 discussed how we handled inbound authentication: pre-installing
a public key (in FLASH) so the TCP knows how to verify the first command it
receives, and building up from there.

For outbound authentication, the natural approach is to keep a private key in
tamper-protected memory and have something create signed certificates about
the corresponding public key. Because of the last-touch-at-manufacturing con-
straint (and because of a design assumption that the manufacturer would be the
central trust root for these devices), the last time we can ensure that an external
trust point can interact with the TCP and sign such certificates is at the factory.
After that, it is up to the TCP itself.

7.1.3 User and Developer Scenarios
Discussions about potential relying parties led to additional requirements.
Developers were not necessarily going to trust each other. For example,

although an application developer must trust the contents of the lower layers
when his application is actually installed, he should be free to require that his
secrets be destroyed should a lower layer be updated in a way he does not trust.
These discussions resulted in the update policy features presented in Chapter 6.
Each code load can specifying the conditions under which that layer’s secrets
should be preserved across changes to lower layers. Any other scenario destroys
secrets.

However, even those relying parties who wanted the device to preserve secrets
across updates reserved the right to change their opinions about whether a
particular version of code was trustworthy. A relying party might have trusted
some version of code, but post facto decide instead not to trust it—even if it was
his own code. Relying parties wanted to be able to verify whether an untrusted
version had been installed during the lifetime of secrets they cared about.

In theory, the OS layer should resist penetration by a malicious application;
in practice, operating systems have a bad history here, so we only allow one
application above it and intend the OS layer solely to assist the application
developer. (That is, the OS can support multiple concurrent processes, but
we assume these are all in the same trust domain.) Furthermore, we need to
allow that some relying parties will believe that the OS in general (or a specific
version) may indeed be penetrable by malicious applications.

Small-scale developers (without a large pre-established reputation) may be
unable to assure the public of the integrity and correctness of their applications
(e.g., through code inspection, formal modeling, etc). Where possible, we

104 TRUSTED COMPUTING PLATFORMS

should maximize the credibility our architecture can endow on applications
from such developers.

We note that this design assumption of “one application space” was driven by
the generally poor record of operating systems in this regard and by the lack of
a suitable high-assurance candidate at the time of product development. Con-
sidering our problem in the framework of a higher assurance operating system,
where this restriction may be unnecessary, or a general-purpose desktop, where
this restriction may be unacceptable, is an interesting area of future work.

7.1.4 On-Platform Entities
We want to give key pairs to entities that consist of software running an TCP.

One of the first things we need to deal with is the notion of what such an entity
is. Let’s start with a simple case: suppose the TCP had exactly one place to
hold software and that the TCP zeroized all state with each code load. In this
scenario, the notion of entity is pretty clear: a particular code load executing
inside an untampered device The same code inside another device
would constitute a different entity, as would a re-installation of inside

However, this simple case raises challenges. If a reload replaces with
and reloads clear all tamper-protected memory, how does the resulting entity

on authenticate itself to a party on the other side of the net? The
card itself would have no secrets left since the only data storage hidden from
physical attack was cleared. Consequently, any authentication secrets would
have to come with and we would start down a path of shared secrets and
personalized code loads.

This line of thinking leads to questions. Should an application entity “in-
clude” the OS underneath it? Should it include the configuration control layers
that ran earlier in this boot sequence but are no longer around? (As we discuss
later, one can even make a case that an entity should include entities that were
previously installed but are no longer present on the card.)

Since we built the 4758 to support real applications, we gravitated toward a
practical definition: an entity is an installation of the application software in a
trusted place, identified by all underlying software and hardware.

7.1.5 Secret Retention
As noted, developers demanded that we sometimes permit secret retention

across reload. With a secret-preserving load, the entity may stay the same, but
the code may change. The conflicting concepts that developers had about what
exactly happens to their on-card entity when a code update occurs led us to think
more closely about entity lifetimes. We introduce some language—epoch and
configuration–to formalize that.

Outbound Authentication 105

Figure 7.1. An epoch starts with a a code-load action that clears a layer’s secrets; each code-load
that changes that layer—or the layers it uses—but preserves its secrets starts a new configuration.

The idea is that the a “configuration” is the exact software stack supporting
an entity; every time any of those components changed (or, for that matter,
undergoes a “null change” by being reburned with the same contents), we start
a new configuration. However, an “epoch” is the length of time that the secrets
are preserved.

A Layer N epoch entity thus consists of a sequence of Layer N configuration
entities. This sequence may be unbounded—since any particular epoch might
persist indefinitely, across arbitrarily many configuration changes, if the code-
loading officer included policies that permitted such persistence across such
changes.

For example, Layer N may undergo a transition such as a secret-preserving
update, a complete reinstall, or an ownership surrender. A hot update will
begin a new Layer N configuration but will preserve the old Layer N epoch;
whether it preserves a K epoch (for K > N) depends on the policy the owner
of Layer K has established.

Figure 7.1 sketches these concepts.

Definition (Configuration, Epoch). A Layer N configuration is the maximal
period in which that Layer is runnable, with an unchanging software environ-
ment in Layers1...N. A Layer N epoch is the maximal period in which the
Layer can run and accumulate state. If E is an on-platform entity in Layer N ,

E is an epoch-entity if its lifetime extends for a Layer N epoch.

E is a configuration-entity if its lifetime extends for a Layer N configuration.

7.1.6 Authentication Scenarios
This design left us with on-card software entities made up of several compo-

nents with differing owners, lifetimes, and state. A natural way to do outbound
authentication is to give the card a certified key pair whose private key lives
in tamper-protected memory. However, the complexity of the entity structure
creates numerous problems.

106 TRUSTED COMPUTING PLATFORMS

Figure 7.2. Replacing untrusted software with trusted software, while retaining the private key,
creates problems. What should the relying party conclude about an entity that proves knowledge
of this private key?

Application Code. Suppose entity C is the code residing in the application
Layer 3 in a particular device. C may change. Two possible changes include:

a simple code update taking the current code to or

a complete reinstall of a different application from a different owner, taking
to

If a relying party P trusts and to be free of flaws, vulnerabilities,
and malice, then the natural approach might work. However, if relying party P
distrusts some of this code, then problems arise.

If relying party P does not trust then how can P distinguish between an
entity with the patch and an entity with a corrupt pretending to have
the patch? (See Figure 7.2.)

If relying party P does not trust then then how can P distinguish between
an entity with the honest and an entity with the corrupt pretending
to be the honest (The mere existence of a signed update command
compromises all the cards—since the relying party cannot know whether
any particular card carried out this update. See Figure 7.3.)

If relying party P does not trust then how can P distinguish between
the honest and a malicious that pretends to be (Essentially, this
is isomorphic to Figure 7.3.)

Code-loading Code. Even more serious problems arise if a corrupted ver-
sion of the configuration software in Layer 1 exists. If an evil version existed
that allowed arbitrary behavior, then (without further countermeasures) a rely-
ing party P cannot distinguish between any on-platform entity and an
consisting of a rogue Layer 1 carrying out some elaborate impersonation.

Outbound Authentication 107

Figure 7.3. The potential to replace trusted software with untrusted software, while retaining
the private key, also creates problems. If the relying party P does not know whether or not the
update happened, what can P conclude about an entity that proves knowledge of this private
key?

OS Code. Problems can also arise because the OS code changes. Debugging
an application requires an operating system with debug hooks; in final devel-
opment stages, a reasonable scenario is to be able to “update” back-and-forth
between a version of the OS with debug hooks and a version without. (In-
deed, the development toolkit that Section 5.4 discussed does just this—under
a special “development” Layer 2 ownerID.)

With no additional countermeasures, a relying party P cannot distinguish
between the application running securely with the real OS, the application with
debug hooks underneath it, and the application with the real OS but with a
policy that permits hot updates to the debug version. The private key would be
the same in all cases.

7.1.7 Internal Certification
The above scenarios suggest that perhaps a single key pair, for all entities

in a TCP for the lifetime of the TCP, may not suffice. If two different entities,
one trusted and one untrusted, had access to the same private key material, then
the relying party can no longer draw a reasonable conclusion from use of the
private key alone. If we want to enable the relying party to do this, the natural
generalization is to have separate keys for separate entities. However, extending
to schemes where one on-platform entity generates and certifies key pairs for
other on-platform entities also creates challenges.

For example, suppose Layer 1 generates and certifies key pairs for the Layer 2
entity. If a reload replaces corrupt OS with an honest then the relying
party P should be able to distinguish between the certified key pair for
and that for However, without further countermeasures, if supervisor-level
code can see all data on the TCP, then can forge messages from
it could have seen the Layer 1 private key.

108 TRUSTED COMPUTING PLATFORMS

A similar penetrated-barrier issue arises if we expect an OS in Layer 2 to
maintain a private key separate from an application Layer 3, or if we entertained
schemes where mutually suspicious applications executed concurrently. If a
hostile application might in theory penetrate the OS protections, then an external
party cannot distinguish between messages from the OS, messages from the
honest application, and messages from rogue applications.

This line of thinking led us to the more general observation that, if the certifier
outlives the certified, then the integrity of what the certified does with their key
pair depends on the future behavior of the certifier.

In the case of our coprocessor, this observation has subtle and dangerous im-
plications; for example, one of the reasons we centralized configuration control
in Layer 1 was to enable the application developer to distrust the OS developer
and request that the application (and its secrets) be destroyed, if the underlying
OS undergoes an update the application developer does not trust. What if the
untrusted OS has access to a private key used in certifying the original appli-
cation? (This observation might also have implications for other types of PKI,
where a CA/RA both generates as well as certifies user key pairs.)

7.2 Theory
As we have discussed, using certified key pairs seems the natural choice for

outbound authentication. However, as we just sketched, the straightforward
approach of just sending the TCP out with a certified key pair permits trouble.

In this section, we try to formalize the principles that emerged while consid-
ering this problem.

A TCP leaves the factory and undergoes some sequence of code loads and
other configuration changes. A relying party interacts with an entity allegedly
running inside this TCP. The platform’s QA scheme enables this application
to wield a private key and to offer a collection of certificates purporting to
authenticate its keyholder.

It would be simplest if the party could use a straightforward validation al-
gorithm on this collection. As Maurer [KM00, Mau96] formalized, a relying
party’s validation algorithm needs to consider which entities that party trusts.
Our experience showed that parties have a wide variety of trust views that
change dynamically. Furthermore, we saw the existence of two spaces:

the conclusions that a party will draw, given an entity’s collection of certifi-
cates and the party’s trust view, and

the conclusions that a party should draw, given the history of those keyhold-
ers and the party’s trust view.

We needed to design a scheme that permits these sets of conclusions to match,
for parties with a wide variety of trust views.

Outbound Authentication 109

7.2.1 What the Entity Says
The relying party P wants to authenticate interaction with a particular entity

E. For this interaction to be meaningful, P must already trust E to behave
correctly with its keys (we will elaborate on this point later). Many scenarios
could exist here; for simplicity, our analysis reduces these to the scenario of E
needing to prove to P that own (E ,K): that E has exclusive use of the private
element of key pair K ; that (in P ’s view) no one who might subvert this will
do so.

We need to be able to talk about what happens to a particular platform: both a
long-term sequence of actions, as well as specific instants along that sequence.
So we introduce some notation—history and run—for these concepts.

A platform can take action only in the context of the particular history H
that it has experienced to that point in time. However, we need to consider
both history and run because this run may continue in several different ways
beyond that point and the actions in these potential futures may be relevant to
the conclusions a relying party draws from an action the platform takes now.

Definition (History, Run,). Let a history be a finite sequence of computation
for a particular device. Let a run be some unbounded sequence of computation
for a particular device. We write H R when history H is a prefix of run R.

In the context of OA for platforms that cannot be opened or otherwise ex-
amined, and that disappear once they leave the factory, it seemed reasonable
to impose the restriction that on-platform entities carry their certificates with
them. For simplicity, we also imposed the restriction that they present the same
fixed set no matter who asks.

Definition. When entity E wishes to prove it owns K after history H , let
Chain(E ,K ,H) denote the set of certificates that it presents.

7.2.2 What the Relying Party Concludes
Will a relying party P believe that entity E owns key pair K ?
First, we need some notion of trust. A relying party P usually has some ideas

of which on-platform applications it might trust to behave “correctly” regarding
keys and signed statements, and of which ones it is unsure.

Definition. For a relying party P, let TrustSet (P) denote the set of entities
whose statements about certificates P trusts. Let root be the factory CA: the
trust root for this family of platforms. A legitimate trust set is one that contains

As discussed earlier, this project arose in the context of a specific commercial
product effort, which imposed some specific constraints. In particular: our
design had to assume that the manufacturer could not construct a database of

root.

110 TRUSTED COMPUTING PLATFORMS

these platforms, nor track could not track where they went. Once the platforms
were deployed, we could neither contact nor audit them, nor could we assume
that they or their applications r relying parties would have network access back
to the factory. These constraints made revocation infeasible. Consequently, for
the problem space we faced, it was reasonable to impose the restriction that the
external party decides validity based on an entity’s chain and the party’s own
list of trusted entities.

We formalize this notion of “reasonable” validation schemes.

Definition (Trust-set scheme). A trust-set certification scheme is one where the
relying party’s Validate algorithm is deterministic on the variables Chain (E ,K ,H)
and TrustSet(P).

We thus needed to design a trust-set certification scheme that accommodates
any legitimate trust set, since discussion with developers (and experiences doing
security consulting) suggested that relying parties would have a wide divergence
of opinions about which versions of which software they trust.

7.2.3 Dependency
The problem scenarios in Section 7.1.6 arose because one entity had an

unexpected avenue to use the private key that belonged to another entity
We need language to express these situations, where the integrity of key
actions depends on the correct behavior of

We formalize this concept as a dependency function, taking an entity to the
set of entities that can subvert its correct operation, with respect to private keys.

Definition (Dependency Function). Let E be the set of entities. A dependency
function is a function such that, for all we have:

(Idempotency)

if then (Transitivity)

When a dependency function depends on the run R, we write

Different entity architectures give rise to different appropriate dependency
functions.

In our specialized hardware, code runs in a single-sandbox controlled envi-
ronment which (if the physical security works as intended) is free from outside
observation or interference. Hence, in our analysis, dependence should follow
from the ability of an entity to read or write another entity’s secrets, or to modify
code that can read or write another entity’s secrets.

Definition. For entities and in run R :

We write when has read/write access to the secrets of
trivially.)

Outbound Authentication 111

We write

when has write access to the code of

Let be the transitive closure of the union of these two relations.

For an entity E in a run R, define

The intuition here is that, for the platform architecture we considered,
lists all the on-platform software entities that could have subverted the correct
operation of entity E in run R.

In terms of our coprocessor, if follows in the post-boot sequence, then
we have (since could have manipulated data before passing
control). If is a secret-preserving replacement of then
(because still can touch the secrets left). If A can reburn the FLASH
segment where B lives, then (because A can insert malicious code
into B , that would have access to B ’s private keys).

7.2.4 Soundness
Should the relying party draw the conclusions it actually will? In our analysis,

security dependence depends on the run; entity and trust do not. This leads to
a potential conundrum. Suppose, in run R, we have:

and

but

Then a relying party P cannot reasonably accept any signed statement from C,
because B may have forged it.

To capture this notion, we define soundness for OA. The intention of sound-
ness is that if a relying party concludes that a message came from an entity,
then it really did come from that entity—modulo the relying party’s trust view.
The party will not conclude that it should trust the entity, if such a conclusion
would be inconsistent with the party’s beliefs.

That is, suppose in some history H R, P concludes own (E ,K) from
Chain (E ,K ,H). If the TrustSet (P) entities behave themselves, then E should
really own K . We formalize this notion:

Definition. An OA scheme is sound for a dependency function D when, for any
entity E, a relying party P with any legitimate trust set, and any history and

112 TRUSTED COMPUTING PLATFORMS

run H R :

We restrict our attention to legitimate trust sets because given commercial
product constraints (a party could not open and examine a platform without
destroying it), it would be difficult for a relying party who did not trust root to
draw any useful conclusions.

7.2.5 Completeness
One might also ask if the relying party will draw the conclusions it actually

should. We consider this question with the term completeness. If in any run
where E produces some Chain(E ,K ,H) and is trusted by the relying
party P — so in P ’s view, no one who had a chance to subvert E would have—
then P should conclude that E owns K .

Definition. An OA scheme is complete for a dependency function D when, for
any entity E claiming key K , relying party P with any legitimate trust set, and
history and run H R :

Note that by our definition of TrustSet , if then P
believes that E will act honestly.

7.2.6 Achieving Both Soundness and Completeness
These definitions equip us to formalize a fundamental observation. If we’re

going build a trust-set authentication scheme that is both sound and complete,
then the certificate chain for an entity needs to name its full dependency set.
Figure 7.4 sketches why.

Theorem. Suppose a trust-set OA scheme is both sound and complete for a
given dependency function D . Suppose entity E claims K in histories
and Then:

Proof. Suppose but
We cannot have both and so, without
loss of generality, let us assume There thus exists a set S
with but

Since the scheme is sound and complete, it must work for any legitimate
trust set, including S. Let relying party P have S = TrustSet (P). Since this is a
trust-set certification scheme and E produces the same chains in both histories,

Outbound Authentication 113

Figure 7.4. If E produces the same chain but may or may not depend on things that P does not
trust, then P must accept a chain it should reject, or reject a chain it should accept.

party P must either validate these chains in both scenarios, or reject them in
both scenarios. If party P accepts in run then the scheme cannot be sound
for D, since E depends on an entity that P did not trust. But if party P rejects
in run then the scheme cannot be complete for D, since party P trusts all
entities on which E depends.

7.2.7 Design Implications
We consider the implications of the above theorem for specific ways of con-

structing chains and drawing conclusions, for specific notions of dependency.
For example, we can express the standard approach—the relying party P

makes its conclusion by recursively verifying signatures and applying a basic
inference rule—in a Maurer-style calculus [KM00]. Suppose C is a set of
certificates: statements of the form says own Let S be the set of
entities that P trusts to speak the truth about assertions of key ownership. That
is:

We can then start reasoning about the set of certificates state-
ments and key ownership conclusions that this party will conclude are true,
given the set of entities the party trusts.

A relying party may start by believing

114 TRUSTED COMPUTING PLATFORMS

So, we initialize to that set of statements. We then keep adding
statements derivable from this set by applying the rule

Informally, if the party trusts an entity and believes that entity owns a key, then
it believes certificates that key signs. The Validate algorithm for party P then
reduces to the decision of whether own (E ,K) is in this set.

We can also express what a party should conclude about an entity, in terms of
the chain the entity presents, and the views that the party has regarding trust and
dependency. If D is a dependency function, we can define
to be the set of statements derivable by applying the alternate rule:

Informally, if the party trusts an entity, and the entity (in this run) is in an
configuration environment that the party trusts, then the party should believe
certificates signed with that entity’s key.

In terms of this calculus, we obtain soundness by ensuring that for any
chain and legitimate trust set, and H R, the set
is contained in the set The relying party
should only use a certificate to reach a conclusion when the entire dependency
set of the signer is in TrustSet (P).

By construction of the inference rules, we can see that containment holds the
other way.

7.3 Design and Implementation
For simplicity of verification, we would like Chain (E ,K ,H) to be a literal

chain: a linear sequence of certificates going back to root. To ensure soundness
and completeness, we need to make sure that, at each step in the chain, we
maintain the invariant that the partial set of certifiers equals the dependency
set of that node (for the dependency function we see relying parties using). To
achieve this goal, the elements we can manipulate include generation of this
chain, as well as how dependency is established in the device. In particular, we
follow two guidelines:

use the software and hardware architecture to eliminate any unnecessary
dependence

and then ensure that the dependency set that remains participates in certifi-
cation

Outbound Authentication 115

7.3.1 Layer Separation
Because of the post-boot execution sequence, code that executes earlier can

subvert code that executes later. (With only one chance to get the hardware
right, we did not feel comfortable with attempting to restore the system to a
more trusted state, short of reboot.) IfB ,C are Layer i,Layer i+ 1 respectively,
then unavoidably.

However, the other direction should be avoidable, and (as Section 6.4.3

discussed) and we used hardware ratchet locks to avoid it. To ensure
we reserved a portion of BBRAM for B, and used the ratchet hardware to
enforce access control (Section 6.4.3). (Essentially, this technique refines and
extends—and implements—the key-hiding technique suggested by Lampson

et al [LABW92, p. 294].) To ensure we write-protect the FLASH
region where B is stored (Section 6.5.2). The ratchet hardware restricts write
privileges only to the designated prefix of this execution sequence.

To keep configuration entities from needlessly depending on the epoch enti-
ties, in our Model 2 device, we subdivided the higher BBRAM to get four re-
gions, one each for epoch and configuration lifetimes, for Layer 2 and Layer 3.
The initial boot-time clean-up code Layer 1 (already in the dependency set)
zeroizes the appropriate regions on the appropriate transition. That is, if this
boot sequence does not preserve the Layer K epoch, the BBRAM region for the
Layer K epoch is zeroized; if this boot sequence does not preserve the Layer K
configuration, the BBRAM region for the Layer K configuration is zeroized.

(For transitions to a new Layer 1, the clean-up is enforced by the old Layer 1
and the permanent Layer 0—to avoid incurring dependency on the new code.)

7.3.2 The Code-Loading Code
As discussed elsewhere, we felt that centralizing code-loading and policy

decisions in one place enabled cleaner solutions to the trust issues arising when
different parties control different layers of code. But this centralization creates
some issues for OA. Suppose the code-loading Layer 1 entity is reloaded
with As Section 6.6.4 discussed, constraints dictated that itself do
the reloading, because the ROM code below it had no public key support. It is
unavoidable that (because could have cheated, and not installed
the correct code). However, to avoid we take these steps as an
atomic part of the reload: generates a key pair for its successor
uses its current key pair to sign a transition certificate attesting to this change
of versions and key pairs; and destroys its current private key. Figure 7.5
illustrates this process.

This technique—which we implemented and shipped with the Model 1 de-
vices in 1997—differs from the concept of forward security [Andb, Gun90] in

116 TRUSTED COMPUTING PLATFORMS

Figure 7.5. When the code-loading layer updates itself, it generates and certifies a new key pair
for its successor.

that we change keys with each new version of software, and ensure that the
name of the new version is spoken by the old version. That is: the device leaves
the factory with a key pair owned by Layer 1, and a certificate signed by the
factory root that names the factory root, and that binds that public key to that
device (specified by model number, serial number, etc) with that version of
Layer 1 code (identity of the owner of this layer, name they gave to this code,
revision number they gave to this code, SHA-1 hash of this code, when the
current Layer 1 epoch started, when the current Layer 1 configuration started,
etc.). Each such update of Layer 1, then adds a transition certificate, signed
by the old version, which names both the old and new version of the Layer 1
code, as well as the fact that a transition took place from the old to the new.

(The BirliX security architecture proposed having an on-platform entity gen-
erate and certify a key pair with each boot [HKK93, Section 6]; this concept
also fits into our framework.)

As a consequence, a single malicious version cannot hide its presence in the
trust chain; for a coalition of malicious versions (and the rest honest), the trust
chain will name at least one malicious entity.

To summarize: we eliminate dependency on future loads by destroying the
old private key; but the past loads (on which a given version depends) participate
in the chain for that version.

7.3.3 The OA Manager
Since we do not know a priori what device applications will be doing, we

felt that application key pairs needed to be created and used at the application’s
discretion. Within our software architecture, Layer 2 should do this work—
since it is easier to provide these services at run-time instead of reboot, and the
Layer 1 protected memory is locked away before Layer 2 and Layer 3 run.

This OA Manager component in Layer 2 will wield a key pair generated and
certified by Layer 1, and will then generate and certify key pairs at the request of
Layer 3. This approach follows our guidelines: the ratchet locks (Section 7.3.1)
ensure that the Layer 1 cannot depend on the OA Manager; the OA Manager
depends on Layer 1, but Layer 1 creates and is named in its chain.

When requesting a key pair, the application specifies whether it should live
as long as that Layer 3 epoch or that Layer 3 configuration. The OA Manager

Outbound Authentication 117

Figure 7.6. If the certifier outlives its own code change, then the application can incur a depen-
dency not named in its chain.

will indicate this in the certificate; in conspiracy with Layer 1, the manager will
also enforce this lifetime, by using our special BBRAM regions to see that the
private key is zeroized when the lifetime ends.

These certificates also indicate that said key pair belongs to an application,
and also include a field chosen by the application. (A straightforward extension
of our trust calculus would thus distinguish between owning and trusting a
key pair for certification purposes, and owning and trusting a key pair for the
application-specified purpose—the last link.)

How long should the OA Manager key pair live? To keep the chain linear, we
decided to have Layer 1 generate and destroy the OA Manager key pair (e.g.,
instead of adding a second horizontal path between successive versions of the
OA Manager key pairs). The question then arises of when the OA Manager key
pair should be created and destroyed.

We discuss some false starts.
As Section 7.1.7 discussed, the interaction of certifier and certified lifetimes

causes trouble.
If the OA Manager outlived the Layer 2 configuration, then our certification

scheme cannot be both sound and complete. Figure 7.6 shows an example.
Suppose Layer 2 is updated from to while preserving the OA key pair

Application depends on the new version but its chain only names
We violate the theorem: the scheme cannot be sound and complete.

If the OA Manager outlives the Layer 3 epoch then we also have trouble.
Figure 7.7 shows an example. Supposeapplication is replaced by application

but the OA Manager retains the same key. If a relying party worries that
may penetrate the OS, then may incur a dependency on — even though
the chain does not name

Our final design avoided these problems by having the Layer 2 OA Manager
live exactly as long as the Layer 3 configuration. Using the protected BBRAM

118 TRUSTED COMPUTING PLATFORMS

Figure 7.7. If the certifier outlives the application, then the old application can incur a depen-
dency not named in its chain; for example, if a new, untrusted application might manage to
penetrate the OS barrier.

Figure 7.8. We insure that chains name dependency by having Layer 1 generate a new OA
Manager key pair with each change to code the application depends on.

regions, we ensure that upon any change to the Layer 3 configuration, Layer 1
destroys the old OA Manager private key, generates a new key pair, and certifies
it to belong to the new OA Manager for the new Layer 3 configuration. If the new
configuration was due to a Layer 1 reload, then the old Layer 1 signs a transition
certificate which signs the new OA Manager key pair. This approach ensures
that the trust chain names the dependency set for Layer 3 configurations—even
if dependency is extended to include penetration of the OS/application barrier.
Figure 7.8 sketches this structure.

(As noted earlier, the private halves of any Layer 3 configuration key pairs
will also be destroyed; if this configuration change does not preserve the Layer 3
epoch, those private keys are destroyed as well.)

Outbound Authentication 119

7.3.4 Naming
We already discussed the naming formats for the initial device certificate

and the transition certificates. The OA Manager certificate names the Layer 1
certificate that signed it, this particular device, and and names the software
entities (again, via identity of the owner of this layer, name they gave to this
code, revision number they gave to this code, SHA-1 hash of this code, when
the current layer epoch started, when the current layer configuration started,
etc.). in both Layer 2 and Layer 3. An application certificate names the OA
Manager certificate that signed it (which thus names the current Layer 3 epoch
and the software present in this Layer 3 configuration), whether this certificate
lives for an epoch or just a configuration, and the arbitrary data field given by
the application.

Trusting an epoch-entity requires, by definition, gambling that future secret-
preserving code changes will be trustworthy. To make this more reasonable,
we include code owner information (so that the relying party can know whose
judgment they are trusting). To accommodate parties who chose to trust epochs
to later change their minds, note that we also ensure that a Layer 3 epoch
certificate (say, for epoch E) still names the Layer 3 configuration (say, in
which it began existence. If, in some later Layer 3 configuration within that
same epoch, the relying party decides that it wants to examine the individual
configurations to determine whether an untrusted version was present, it can
do that by examining the trust chain for and the sequence of OA Manager
certificates from to An untrusted Layer 1 will be revealed in the Layer 1
part of the chain; otherwise, the sequence of OA Manager certificates will have
correct information, revealing the presence of any untrusted Layer 2 or Layer 3
version.

In a sense, a relying party exercising this “right of retroactive paranoia”
begins with a trust set that treats configuration within an epoch in the same
equivalence class, but then relaxes this assumption.

7.3.5 Summary
As noted earlier, the trust chain for the current Layer 1 version starts with

the certificate the factory root signed for the first version of Layer 1 in the card,
followed by the sequence of transition certificates for each subsequent version
of Layer 1 installed. The trust chain for the OA Manager appends the OA
Manager certificate, signed by the version of Layer 1 active when that Layer 3
configuration began, and providing full identification for the current Layer 2
and Layer 3 configurations and epochs. The trust chain for a Layer 3 key pair
appends the certificate from the OA Manager who created it.

Our design thus constitutes a trust-set scheme that is sound and complete
for the dependency function we felt was appropriate, for any legitimate trust

120 TRUSTED COMPUTING PLATFORMS

set. A certificate for an OA Manager key pair names exactly those configura-
tion entities (including Layer 3, in case one does not trust the OS protections)
that correct use of the Manager’s private key depends on. A certificate for
a configuration-length application key pair names exactly those configuration
entities it depends on.

A certificate for an epoch-length application key pair names exactly those
epoch-entities it depends on; should the relying party later decide to not trust a
particular Layer 3 configuration, a method exists, as sketched above, to shift to
a configuration entity and determine if the untrusted configuration was present.

7.3.6 Implementation
Full support for OA shipped with all Model 2 family devices and the CP/Q++

embedded operating system.
Implementation required some additional design decisions. To accommodate

small developers (Section 7.1.3), we decided to have the OA Manager retain all
Layer 3 private keys and wield them on the application’s behalf; consequently,
a party who trusts the penetration-resistance of a particular Layer 2 can thus
trust that the key was at least used within that application on an untampered
device. Another design decision resulted from the insistence of an experienced
application architect that users and developers will not pay attention to details
of certificate paths; to mitigate this risk, we do not provide a “verify this chain”
service—applications must explicitly walk the chain. We also gave different
families of cards different factory roots, to encourage relying parties to make a
conscious decision about the root they choose.

A few aspects of the implementation proved challenging. One aspect was
the fact that the design required two APIs: one between Layer 1 and Layer 2,
and another between Layer 2 and the application. Another aspect was finding
places to store keys. We extended the limited area in BBRAM by storing a
MAC key and a TDES encryption key in each protected region, and storing
the ciphertext for new material wherever we could: during a code-change, that
region’s FLASH segment; during application run-time, in the Layer 2-provided
PPD data storage service. Another interesting aspect was the multiplicity of
keys and identities added when extending the Layer 1 transition engine to per-
form the appropriate generations and certifications. For example, if we decide
to accept a new Layer 1 load, we now also need to generate a new OA Manager
key pair, and certify it with the new Layer 1 key pair as additional elements of
this atomic change. Our code thus needed two passes before commitment: one
to determine everyone’s names should the change succeed, and another to then
use these names in the construction of new certificates.

As has been noted elsewhere we regret the design decisions to
use our own certificate format, and the fact that the device has no form of secure
time (e.g., Layer 3 can always change the clock). Naming the configuration

Outbound Authentication 121

and epoch entities was challenging, particularly since the initial architecture
was designed in terms of parameters such as code version and owner, and a
precise notion of “entity” only emerged later.

7.4 Further Reading
This chapter is based in part on my ESORICS and IJIS papers [Smi02].
The details of the software configuration and epochs that this outbound au-

thentication scheme provides may still not be sufficient for an external relying
party to make a trust judgment, if the the relying party does not know how to
evaluate whether the platform so configured is trustworthy for an application.
Chapter 9 and Chapter 11 present approaches my students and I developed to
allow an external level of indirection. particularly in the context of SSL Web
sessions: the relying party delegates this evaluation to a CA who indicates the
appropriate attributes in the certificate it signs for the TCP. Very recently, a
generalized version of this idea—property-based attestation—has appeared in
the literature [SS04].

Chapter 8

VALIDATION

The notion of a “trusted computing platform” centers, by definition, on trust.
The appropriate stakeholders need to be able to trust the computation this plat-
form carries out. However, as Section 1.1 introduced, the concept of “trust”
is more nuanced than the naive way we in the security community often use
the term. We need to worry about exactly what it is the stakeholder wishes to
trust the platform to do. We need to worry about whether the platform is in
fact worthy of that trust. Finally, we also need to worry about how it is the
stakeholder knows that the platform is in fact worthy of this trust.

A large part of the value of the IBM 4758 architecture—described in Chap-
ter 6 and Chapter 7—was that it was not just idle speculation. Rather, this
work yielded a real product in the real world. Stakeholders included potential
customers who needed to know why they should believe that our TCP was in
fact trustworthy—and what this meant. In my security analysis work before
IBM, I would continually tell clients “never trust a vendor.” Suddenly I became
one. Why should my former clients believe me?

To make the case to the stakeholders, we needed to find an external, indepen-
dent entity to validate our TCP. Performing this validation against a standard set
of criteria would give it more credibility than an ad hoc review. At the time, the
Federal Information Process Standard (FIPS) 140-1 seemed the standard (and
validation process) most appropriate to our platform. FIPS 140-1 addressed
security for cryptographic modules. Although cryptographic modules are not
quite the same thing as a TCP, but FIPS 140-1 did talk about physically secure
devices that did computation. Furthermore, an additional motivation existed:
FIPS 140-1 had several levels, and no module had ever been validated at Level 4,
the highest security level. By my recollection, we told the business units that
we were aiming for Level 3—but went for Level 4 anyway. We succeeded in

124 TRUSTED COMPUTING PLATFORMS

earning the world’s first validation at FIPS 140-1 Level 4, and (to date) no other
general-purpose programmable device has even equaled this level.

This chapter discusses this experience.

Section 8.1 presents the background of the FIPS validation process.

Section 8.2 presents our validation strategy.

Section 8.3 formalizes the security properties I deemed important for our
architecture;

Section 8.4 discusses we formally verified that our architecture had these
properties.

Section 8.5 discusses the other aspects of the validation.

Section 8.6 provides some overall reflections on the validation process.

8.1 The Validation Process
8.1.1 Evolution
The Orange Book. Perhaps the most well-known set of computer security
standards is 1985’s Trusted Computer System Evaluation Criteria (TCSEC),
the U.S. Department of Defense’s rules for computing systems [Dep85]. (This
document—and the rules and world view it puts forth—is commonly known as
the Orange Book, after the color of its cover.) The Orange Book intended to
give users a “yardstick” to measure security, to guide manufactures in designing
and producing secure systems, and to guide procurement officers who need to
decide what computers to buy for DoD applications. For the DoD, the security
goal was making sure that classified data does not fall into the wrong hands.
The Orange Book focuses both on features—what the system must do—as well
as assurance—why someone should believe it does that. It set up a series of
ratings, increasing in required functionality and assurance. A system was also
put in place whereby vendors could submit systems to receive ratings, according
to this yardstick.

As an aside, a number of apparently synonymous terms might describe the
process of earning such a rating: “validation,” “certification,” “evaluation,”
etc. The reader should note two things. First, some subcommunities are very
persnickety about which term applies to their particular standards process; so
if the audience looks aghast when one uses one of these synonyms, then try
a different one. Second, marketing literature will occasionally use a term like
“compliant”; this means that in the judgment of someone such as a marketing
executive, the product might satisfy the criteria of the standard. If one is the
audience for such a usage, interpret it to carry the rigor it deserves.

Validation 125

Physical Security. As noted, the DoD focused on protecting classified data
within a larger computing system. As a result, the Orange Book developed
criteria—such as for labeled data and sanitization of re-used objects—for sup-
porting sensitive data and operations within a larger software environment.

However, these criteria were not directly relevant to trusted computing plat-
forms intended to provide security against adversaries with direct physical ac-
cess. As a consequence, in 1990, Steve Weingart (behind the physical security
designs for and the 4758), Steve White (behind ABYSS and Citadel)
and colleagues proposed evaluation criteria for physical security [WWAD90].

The proposal focused not as much on defensive techniques as it did on the
difficulty of successful attacks. For physical security, the proposal laid out a
series of six levels (Level 1 through Level 6) of increasing security, over four
different categories. A system’s overall rating was its minimum rating in these
four categories. At the higher levels, the proposal required the evaluators to
try attacks not anticipated by the designers. This proposal also made a point of
considering both the platform as well as the environment in which the platform
was used.

8.1.2 FIPS 140-1
In 1994, the U.S. Government followed up with FIPS 140-1 [Nat94]. As

noted earlier, this standard was intended to address cryptographic modules:
devices that performed cryptography (and perhaps other computation), and
ensured the confidentiality of cryptographic keys—as well as the integrity of
cryptographic algorithms—against an adversary with direct physical access.
FIPS 140-1 reduced the six levels of the Weingart et al classification to four,
across a wider set of categories. As in the earlier classification scheme, a
module’s overall rating is the minimum of its ratings in the various categories.

Given that “cryptographic modules” can show up in a variety of forms in the
information infrastructure, FIPS 140-1 had an additional axis. Besides “level”
and “category,” FIPS 140-1 also had different rules depending on what type
of module it was—ranging from software-only to single-chip to multi-chip.
The rules for software modules tried to establish equivalences to the physical
security of the hardware modules by requiring Orange Book validations for the
larger software environment, but (as Peter Gutmann observed [Gut04, Section
7.1.2]), this led to “impedance mismatches”: relatively insecure commercial
operating systems being ranked equivalent to relatively high-security physical
modules.

Perhaps as a consequence of eliminating two levels, a substantial gap exists
between FIPS 140-1 Level 3 and FIPS 140-1 Level 4. On the physical level,
the criteria move from withstanding a few suite of prescribed tests to virtual
impenetrability; on the software end, the criteria move beyond substantial doc-

126 TRUSTED COMPUTING PLATFORMS

umentation to a complete formal mathematical model and (within that model)
formal proof of security.

8.1.3 The Process
With the FIPS 140-1, an independent laboratory carried out the validation,

under the auspices of the U.S. and Canadian governments. This process could
involve six months or more of interaction with the laboratory. The fact that
the vendor paid the bill—plus the fact that this interaction took design and
implementation staff away from product preparation, and potentially delayed
shipment—made validation a substantial process, not to be undertaken lightly
(and forbidding even for larger vendors).

Determining exactly what the validation involves also was surprisingly com-
plex. One starts with the standard itself, which (at 55 pages) is almost man-
ageable. However, the Derived Test Requirements [HMMW95], over twice as
long, provides much more specific details regarding the actual testing. Fur-
thermore, much as law consists of the original legislation filtered through the
prism of case law, FIPS 140-1 consisted of these documents filtered through the
online implementation guidance. All of these items referred to other FIPS and
ANSI standards for specific cryptographic algorithm specifications. The fact
that the original standard document fans out to all these other documents—and
the fact that the online guidance and (occasionally) the cited standards would
continually evolve and change during the non-trivial interval in which a module
underwent validation—made this process even more challenging.

8.2 Validation Strategy
Our device is a secure coprocessor platform. As Chapter 6 discussed, a set of

external authorities can conspire to configure a particular platform with a certain
software stack. Each layer in this stack can then execute and accumulate state,
as long as the device remains untampered and the environment supporting that
layer remains in a state that the authority over that layer deemed trustworthy
a priori. Thus, what we want to validate is that this works: the platform is a
physically secure package guarded by secure bootstrap/configuration control
software. “Trust us” is not good enough, and a validated platform would make
it easy for follow-on applications to get validated.

A priori, we decided to separate the software validation effort from the hard-
ware validation effort. This section describes our initial plan to validate the
software. (Section 8.5 below discusses hardware.)

The software validation required several different components:

The validation process required a security policy. In textbook and classroom
settings, this is a chart indicating who can do what to whom when; the
policy has the implicit goal of being small enough for a human can analyze

Validation 127

it and determine what it is the system does, and whether it makes sense. In
development settings, the security policy also becomes something one can
tack on the wall (at least, that’s what I did) and use to guide implementation
decisions.

However, the FIPS validation process required the policy to be in a special
(and rather lengthy) format; this ended up being different from the textbook
policy that guided the implementation.

The validation process required a finite state machine (FSM) of the system
software. In software development, a programmer is used to thinking of the
system as being in some particular condition; code transforms the system
condition, based on the current condition and external inputs. These notions
extend to formal modeling: the system is in some state, and processing and
events transform that state.

However, in the established tradition for FIPS validation, the “state” is not
the system conditions that get changed, but the actual transition function
itself. This counter-intuitive terminology required us to think of some other
term for the system state that gets transformed; it also led to continual
misunderstandings from our research colleagues. (E.g., “what’s so hard
about verifying a system with fewer than 1000 states?”)

The FSM appeared to have two roles in the validation process: both to serve
as a guide for the human validator to understanding the code, as well as to
serve as a foundation for formal analysis.

The validation process required a formal mathematical model that describes
how the system behaves. Within this model, we needed to specify the
invariants that described the important security properties, and then verify
that system behavior (within this model) preserved these invariants.

The validation process also required extensive documentation: source code,
annotated to show correspondence to the FSM; diagrams of the FSM; dis-
cussion of each state; and exhaustive state transition tables.

The validation process did not require mechanical verification that the se-
curity invariants held in the formal mode. However, given the advances in
near-industrial strength automated formal methods (see [CW96] for a survey
of the state of the art then), we decided to use automated methods: both to gain
increased assurance that the invariants in fact held, and also (given the “case
law” flavor of FIPS, and the fact that we were blazing new ground with Level 4)
to set a strong precedent.

Automated formal methods come in two main varieties.

128 TRUSTED COMPUTING PLATFORMS

Figure 8.1. The formal verification process, as we envisioned it before we started.

Model checkers search a state space for violations of an invariant. A negative
result gives details about how to reach a counterexample; a positive result
simply says “no violations.”

Theorem provers instead produce a proof that the model satisfies the security
property. A positive result yields a proof that (in theory) a human could read
and check; a negative result simply says “could not prove it.”

Since we believed the system worked, and since the idea of a checkable proof
of security seemed appealing, we chose the latter route. Since we had access to
an installation of it (and an experience pool) within IBM, we chose to use the
ACL2 theorem prover [KM97].

Figure 8.1 shows the process we planned. As designer and developer, I would
take my knowledge of the system configuration and software and produce the
finite state machine. Working with Vernon Austel, we would abstract this
description into the formal model, and then embed it in the language of the
theorem prover. We would then take the security goals of the system, abstract
them into formal statements, and embed them in the language of the theorem
prover. We would then just turn the crank, and produce the proof of security.

Needless to say, it did not quite work out this way. Section 8.4 will expand
on what happened.

Validation 129

8.3 Formalizing Security Properties
Our validation effort depicts our TCP as an armored room with a burly

guard at the door. The software component of the validation focuses on this
burly guard: permanent Miniboot 0 and rewritable Miniboot 1, which control
device security. In terms of a classic policy, these entities provide services to
the various external code authorities, who can issue commands during the time
Miniboot runs to do things like load code, establish child officers, and help do an
initial load of the child’s code. During an ordinary boot (with no configuration-
changing commands), a user can request a signed statement about what’s in the
card, and (implicitly) invoke Layer 2 and Layer 3 code.

Given the FIPS notion that “officers” are the privileged entities that invoke
privileged module operations, the code “Authorities” from Chapter 6 turned into
“Officers.” (We also had to push the boundary somewhat, in that, in general, our
Officers communicated their commands via signed requests—with considerable
space and time separating the signing of the command at the Officer site from
the playing of the command to the module.)

The Miniboot code also cleans up after various other events: resets occurring
during its operation, detection of component failures, and actual tamper. This
reality quickly taught us that our a priori separation of hardware from software
was misguided; the software formal model needed to include hooks to represent
the effect these real-world hardware events would have on the operation of the
software.

Throughout operation, Miniboot (and hardware) manipulates fields such as:

the programs and the public keys in each FLASH segment;

the identity of each officer;

the state of each FLASH segment;

the state of the overall device initialization;

and the state of the secrets for each layer.

These became the foundations of our “system condition” space (what we would
have called “state,” except the FIPS tradition already used that term for the
transformation functions).

One our main goals with this formal verification was to establish safety.
We know from testing that the device does what it is supposed to do under
ordinary conditions. However, given the many separate pieces, the split between
Miniboot 0 and Miniboot 1, and various disasters and failures that may occur,
we were much more concerned about verifying that the device not do something
insecure under some bizarre, hard-to-test scenario.

To do this, we define a sequence of primary invariants. We then mechanically
prove that, when the device starts in in the configuration resulting from “Factory

130 TRUSTED COMPUTING PLATFORMS

Initialize” and we do not load something other than Miniboot 1 into Layer ;
that these invariants remain true.

Informal Invariants. Our security software (in conspiracy with the hardware)
makes two central commitments.

Only the current Officer over Layer N in a device gets to control that
Layer N ’s software environment, in cooperation with his parent Officers.

Only that layer gets to see the secrets it accumulates, despite the various bad
things that may happen.

We need to transform these commitments into more formal invariants.

8.3.1 Building Blocks
We need some formal notation to use as building blocks here.
First, recall that (in FIPS lingo) a state is a period of transformation: when

the hardware is executing some chunk of code. We thus use the term device
configuration to describe what the rest of us would call “state:” the state of the
device, its critical fields and parameters, etc.

Execution States. We need to be able to talk about the software execution
states corresponding to each layer of software, and to order the execution states
by layer and reachability, in order to say things like “Property X must be true,
if we ever get beyond State S.”

Before boot time, the device hardware may act. (We put reaction to reset
and tamper in this category too.) After that, the software is executing. Let
Exec-State be the set of reachable states, in which the system is executing. We
partition this into the sets Exec_State_0 through Exec_State_4, for each layer’s
period during boot (plus runtime, after the application initializes). We then
define a partial order on these states that respects reachability order—and also
follows the striations of this partition.

Actors. We need to describe what the device is, and who controls it, up some
layer p. We define to be the tuple of parameters describing the state
of the Layer p configuration, in device configuration C. An actor is either such
a p-actor, or the special actor Hardware, to denote actions taken by the hardware
itself.

For state S, define:

describes who is acting, when the device is in state S.

Validation 131

Bad Hardware. We define the predicate to be true when con-
figuration C is unsafe for state S (e.g., due to failure of some critical memory
component).

Healthy Environment. For a software layer to run fully and correctly, the
device must have some minimum level of health beyond simply not having bad
hardware. We define the predicate to be true when configu-
ration C has appropriate hardware and sufficient initialization to run Layer p in
state S.

8.3.2 Easy Invariants
Some of the invariants we proved were fairly straightforward.

Clean-up. As we discussed in Chapter 6, the different software layers can
be in different states (e.g., “Unowned,” “Runnable,” etc.). The device itself
can have different levels of initialization (e.g., whether it has the Miniboot 0
secrets, whether Miniboot 1 has a certified key pair, etc.). During design, I
crafted a couple of straightforward matrices showing what combinations were
legal and what were disallowed; during implementation, I tried to ensure that
the Miniboot code would ensure that the disallowed combinations were not
reachable.

Almost as an exercise, the first invariant we verified was: does this clean-
up work? Under the various reachable states (coupled with hardware failures
and interruptions), do we ever end up in the disallowed regions? The answer,
fortunately, was “no.”

Safe Access. We then established that lower-privileged software cannot access
the secrets belonging to higher-privileged software. That is: if
then This is also fairly easy to show: after initialization, you cannot
jump across layers without the ratchet increasing.

Safe Execution. We also showed that the device cannot execute in a state
where it depends on hardware that has failed. So, for any reachable S,C, we
show that

(Note that the our failure model makes the simplifying assumption that phys-
ical failures stop the device. As a consequence, this model does not address the
window between the testing for failed hardware, and—within the same reset
cycle—executing code that depends on that hardware.)

8.3.3 Controlling Code
The Miniboot security policy gives lots of options about which Officer can

change what, under what conditions. However, with our “safe control” invari-

132 TRUSTED COMPUTING PLATFORMS

Figure 8.2. The “safe control” invariant asserts that, if a layer changes in a way other than
decay, then that layer’s officer—or a superior—started the process (which could, conceivably,
have included changing officers at some point).

ant, we describe the overall goal of this table—by proving it, we verify that the
policy makes sense.

Given some configuration C, who can change layer p in the device? Only
Officer k, for the key they had in C. So if you trust yourself and
your superior officers now to behave themselves, you can trust that your layer
will remain unmolested.

Some of the wrinkles here that we needed to address included the fact that a
Layer may “decay” due to various types of failures, and the fact that Officer k
for this device at some future point in time might not necessarily be the same
party as Officer k is now.

We needed to define a partial order on the status of each layer, in order to
distinguish between decay, and other types of change. We then formalized
(and verified) the statement that Figure 8.2 sketches: if a sequence of Layer p
configurations exists where the initial Layer p status does not dominate the final
one, then some Officer k issued some successful configuration-
changing command, using their identity and keys that existed in the initial
configuration in this sequence.

8.3.4 Keeping Secrets
Officer p’s program runs and accumulates secrets. However, various bad

things can happen that cause the device to stop being a safe place for these
secrets. These bad things include:

hardware attacks

hardware failures

changes to the contents of layer k (for k < p) that Officer p did not trust

Validation 133

Figure 8.3. The “safe zeroization” invariant asserts that, if the environment for a layer stops
being trusted and safe for that layer, then its secrets will be destroyed by a trusted remnant,
running safely, before any potential adversary (or untrusted software) gets control.

changes to the contents of layer k that do not necessarily involve the partic-
ipation of Officer p

We need one clean way to say “one’s secrets are safe.” The problem in
stating this invariant is that “safe” means different things, depending on the bad
thing that happens:

Hardware attacks cause instant zeroization.

Untrusted changes to parents cause clearing now (during the change) or at
the next boot (before anyone gets to run).

Furthermore, if the parent in question was Miniboot 1, then the secrets
had better be cleared by the old, trusted Miniboot 1 and/or the permanent
Miniboot 0 before the new Miniboot 1 gets a chance to run.

Untrusted changes to contents of layer p should cause clearing before layer p
gets a chance to run again.

Certain POST failures cause the secrets to remain intact, but the device then
never goes beyond POST.

The problem in proving this invariant is that, because “bad things” do not
necessarily result in instant clean-up, additional bad things may occur before
the device has finished responding to the first one.

The “safe zeroization” assertion we developed is temporal:

if a bad thing happens now,

and an adversary might see the secrets later,

then sometime in between, the secrets have been destroyed.

Figure 8.2 sketches this invariant.

134 TRUSTED COMPUTING PLATFORMS

To express this, we assume we are given p and a starting configuration
We then define three new auxiliary variables that “remember” the

relevant events:

Has the environment broken for p? We define the predicate
to start out false, but become true when something happens that makes

fail; when some has an accepted emergency burn
(since these can never be trusted); when some k < phas an ordinary burn
that is not trusted by Officer p; when some surrenders; and when
some becomes not runnable.

Who is trusted to do the clean-up? We define to be
the subset of the hardware and Layers that Officer p trusts. Initially, this
is everything up top; however, various configuration changes, failures, and
tamper can reduce this set.

Has the clean-up happened yet? We define the predicate
to become true when the Layer p secrets are destroyed.

We then can state the invariant. Suppose the device is in some state S
and configuration C. Layer p is runnable, and the configuration and satisfies

From then on, if becomes true but the current layer
acting is not in then is true.

8.4 Formal Verification
Figure 8.1 above sketched the formal verification process we initially planned.

Figure 8.4 sketches what actually happened: the FSM and FM merged, and we
required much iteration on the mechanics to get the proofs to work out.

One of the surprises was the difficulty in abstracting from the finite state
machine to the formal model. The formal model was supposed to describe
what the device does, and the FIPS documentation rules essentially required a
deterministic, total function for each FSM state. Since non-trivial abstraction
from the FSM to the FM was not working, we ended up merging the two: the
formal model was built directly from the FSM.

Other issues arose in defining the functions for each state. Since device
behavior is not determined by software alone, we needed to add hardware
events to our model, to describe how hardware passes control to software, and
to describe how software reacts to hardware events. Describing what the device
“does” depends on the level of abstraction of the view—e.g., the particular
Miniboot 1 signature verification code executing right now, or the fact that
if we drill a hole, the device will zeroize. To accommodate these layers of
abstraction, we built a hierarchy of finite state machines/models, where a state
in one can expand into a child FSM. This allows us to have one function per
state, while also encapsulating functionality common to many states in one place

Validation 135

Figure 8.4. The formal verification process, as it actually happened.

(explicitly linked via a Parent-Trap hook). Standard wisdom in programming
is to put common functionality in one place. The same wisdom applies when
building a formal model.

Sometimes, our code states could embody a natural reaction to some external
event (such as a failure or some Miniboot command); other times, the natural
granularity of the software structure required successive states with no natural
trigger event. Thus, we developed an event set that included the generic “tick,”
and a driver function that steps through the model, taking into account events
and parents.

I obtained the FSM states by partitioning the source code into small chunks,
and associating atomic transformations with each state. The code was written so
stateful changes are atomic, but we still required splitting states here and there.
These software states varied significantly in complexity; some configuration
clean-up states each represent just a test or two, but FLASH burning can take
lots of code. To structure the FSM cleanly, we even had switch states that
did not change the configuration at all. Other war stories included carefully
constructing component sets to cover every scenario formally, and developing
structural validity predicates to indicate which combination of tuples were in
fact legal.

Another surprising challenge was keeping the documentation synchronized.
Figure 8.5 shows the various documentation elements and their linkages. With

136 TRUSTED COMPUTING PLATFORMS

Figure 8.5. To keep the validation documentation synchronized despite the continual fluidity, I
developed some customized tools.

the continual fluidity induced by the various tuning and refining necessary to
get the formal modeling to succeed, it was easy to lose correlation. If we
changed one element, how many places in how many different files (in how
many different formats) need to be touched? To address this, I used symbolic
references everywhere. I developed custom macros (and post-processing
code, in C) to create the transition tables and formal model documentation, and
update the FSM diagrams and source code annotation, from master changes in
the state documentation.

From all of this, we learned that the software works (at least, within its
abstraction as this model). However, it was also good that I designed it for
modeling eventually; had we not been aiming for that goal all along, it is
not clear how feasible this process would have been. We learned that, as in
programming, concise expression is important. In the model, it was good to
put common structure in one place; in the documentation, it was good to have
automated tools to keep things correlated. We learned that time and temporal
order was critical in the security assertions we needed to approve (and that our
theorem prover did not like this). We also learned that the a priori division of
hardware and software was not always appropriate.

8.5 Other Validation Tasks
The validation process also required other tasks.

Validation 137

Hardware. One of the largest tasks was showing that the physical security
withstood the Level 4 scrutiny. Some of the issues here included quantify-
ing exactly what “no undetectable penetration” meant; clarification emerged
regarding minimum hole sizes for conductive and non-conductive probes that
must trigger tamper. (It was also rumored that, due to the tamper-resistant na-
ture of our packaging, the validation lab kept snapping drill bits, and one our
units under test ended up looking like a “porcupine.”)

Algorithms. We needed to prepare excruciating documentation for all crypto-
graphic algorithms, and have the device test them at run time. We had hardware
support for many, and the POST code prepared by the hardware engineers tested
this; however, as yet another instance of the wrong a priori division of hard-
ware and software, we had to re-test these in software, since validation required
looking at the entire stack—software and hardware—as seen by the party using
the cryptography.

For “approved” algorithms (basically, algorithms for which a FIPS or other
appropriate standard existed), we also needed to go through validation tests to
prove that our implementation indeed conformed to the standard. This task was
trickier than it needed to be, due to formatting and other ambiguities. We also
had problems because the de facto signature standard was RSA—but this was
still not approved at the time of validation. As a consequence, we needed to add
DSA support and options for all Miniboot places that used signatures, precisely
so customers could then proceed not to use it.

Randomness. Obtaining approval for our randomness sources was also chal-
lenging. The rules that the random number generator must satisfy statistical
tests at power up and continuous tests throughout operation, and that (for keys)
hardware bits must go through a FIPS-approved pseudo-random number gen-
erator. We added statistical and continuous tests on the hardware RNG, and
obtained RSA and DSA keys through the DSA PRNG, and obtained DES keys
through a DES-based PRNG.

However, even though our cryptographers could establish that DES was suffi-
ciently pseudo-randomizing, the validation lab would not accept this argument.
So, we sent DES keys through the DSA PRNG too.

The validation lab then would not accept our statistical and continuous tests,
since they applied to the hardware RNG, not to the PRNG. We pointed out
that since the hardware RNG was working fine, and it was seeding the PRNG
algorithm that the validators approved, and that our self-tests had shown the
PRNG code had not changed. Wouldn’t this be sufficient? Our argument was
rejected. We added the extra set of tests—and found a bug! (It turns out that,
due to all the changes in PRNGs, one of the contexts was not getting populated,
and a PRNG context of zeros will yield a sequence that fails the tests.)

138 TRUSTED COMPUTING PLATFORMS

Operational Testing. The validation laboratory provided a list of items that
we needed to demonstrate via operational testing. For each element in this list,
we needed to interpret what it meant (for our device), verify that the device
does it, submit a written plan for demonstrating it, and then demonstrate it for
the validators.

This task forced me to prepare even more custom software. I needed to
extend the test platform to support scripting and also to trigger all reachable
errors. This testing requirement conflicted with good “belt and suspenders”
defensive coding, since some failures were not reachable, because earlier code
tests caught them. We needed to break Miniboot, in order to simulate FLASH
failures; we needed to customize the hardware, to force zeroization and to break
the hardware RNG.

In theory, these tasks are what one does for product development anyway; in
practice, these tasks were an extra burden, due to the highly specialized nature
of the operational testing requirements.

Follow-ons. Our Model 1 device earned the world’s first FIPS 140-1 Level 4
validation.

Afterwards, we upgraded to Model 2 with more advanced hardware and with
full support for the outbound authentication design in Chapter 7. We repeated
the Level 4 validation for Model 2. We also carried out a Level 3 validation for
our device, with the CP/Q++ software in Layer 2; the complexity of this legacy
code made the formal modeling requirements of Level 4 not feasible.

8.6 Reflection
Overall, the existence of the FIPS 140-1 validation process and our passage

through it served the purpose of helping to establish assurance that our TCP
works as advertised. On the other hand, it took a great deal of time and expense,
and consequently is beyond the reach of many developers. Validation requires
resources and time that do not fit into the typical product lifecycle. These
complaints were raised for the older Orange Book, and also for the newer
Common Criteria (see below); how to reduce the barriers that seem endemic to
formal security validation is an area of active research.

When preparing the follow-on standard, FIPS 140-2 [Nat01], NIST solicited
comments. Numerous parties—both our team and others—raised various tech-
nical issues. The new standard addressed many of these: such as adding config-
uration management requirements for product lifecycle, and establishing some
defense standards for newer side-channel and induced fault attacks that emerged
during the life of 140-1 (recall Chapter 3). Another route that a TCP designer—
or user—could chose is the Common Criteria [Com04], a newer international
standards and validation system that emerged in the late 1990s. Departing
from the Orange Book (which linked functionality to assurance in its ratings)

Validation 139

and somewhat from FIPS 140-N (which provided some functional variation),
the Common Criteria separates the security functional requirements from the
evaluation assurance level. A security target describes the functionality and
assurance for a particular device; a protection profile describes security require-
ments and assurance levels for a class of devices or systems. (However, the
standard itself observes that some “technical physical aspects of IT security”
are outside the scope of the Common Criteria, so FIPS 140-2 may be remain
appropriate for TCPs.)

Neither FIPS 140-2 nor the Common Criteria address what I see as one of
the fundamental problems with these standards: how to balance the details
that describe what a particular device does with the generality necessary for an
overworked manager to make the appropriate procurement decision. Even with
FIPS 140-1, we had to wrestle to make a standard designed for crypto boxes fit
our general-purpose programmable platform; the crypto library for Netscape
looks very different from a postal meter, but FIPS 140-1 was used for both. On
the other hand, the four levels, coupled with the varieties of module types and
the fact that each module fit into a larger deployed system in a different way, was
already too complicated. E.g., when the Bond attack on the CCA application
surfaced [BA01], explaining that CCA was an unvalidated application living
on top of a Level 3 validated OS layer living on a Level 4 module was overly
complicated for some parties.

FIPS 140-N has not enough variations, and too many. The Common Criteria
seems to go further in the “too many” category, but time will tell.

8.7 Further Reading
[SA98] gave a preliminary sketch of our formal modeling strategy; unfortu-

nately, the promised more complete exposition never made it out of the draft
stage. [SPWA99] gives an overview of our FIPS validation experience. Obtain-
ing a good general picture of the Common Criteria from reading the standard
itself is difficult; more concise (but perhaps slanted) introductions can be ob-
tained from the commercial laboratories that carry out the validations.

Chapter 9

APPLICATION CASE STUDIES

Chapter 1 through Chapter 8 have toured the evolution of an armored,
general-purpose secure coprocessor as a trusted computing platform. This
chapter will now present case studies that used this TCP to solve distributed
trust problems. Section 9.1 will review the basic building blocks. Section 9.2
will use this TCP to harden Web servers and their applications. Section 9.3
will use this TCP to bind an archive of sensitive information to the policy es-
tablished for its use. Section 9.4 will use this TCP to allow clients to request
and modify data stored at a server that learns nothing about the access patterns.
Section 9.5 explores some other applications, and1 Section 9.6 discusses some
lessons learned from this experience.

9.1 Basic Building Blocks
Let’s start by reviewing the computational model we’re considering.
The applications in this chapter were all built around the IBM 4758, because

that’s what we had. However, we will generalize from the immediate reality of
our prototype environment to a more general architectural model. Any system
supporting these features could (in theory) support these applications. The
limitations of the real platform sometimes shaped the application challenge;
sometimes, the applications suggest some new architectural features.

Execution Environment. The TCP has secure non-volatile memory, zeroized
upon tamper. The TCP has an execution environment—with volatile memory,
CPU, and access to the secure non-volatile memory—that is also shielded from
the adversary and zeroized upon tamper. The TCP has non-volatile program

1This is just a test, to see how the footnotes come out.

142 TRUSTED COMPUTING PLATFORMS

memory within its protected environment, but we do not assume that this mem-
ory is zeroized upon tamper.

Configuration. The TCP houses an onboard application entity. We assume
that that the TCP family supports multiple developers and a broadcast distribu-
tion model (although more limiting assumptions would only make the “design
problem” easier).

Outbound Authentication. The TCP can ensure its application entity has
exclusive use of a private key, and can bind the corresponding public key to
parameters sufficient to enable a remote relying party make a reasonable trust
judgment about this entity.

Hardware. Some applications greatly benefit from the TCP having the abil-
ity to quickly transfer data across the secure boundary through a symmetric
cryptography engine of sufficient strength (e.g., TDES or AES).

Limitations. We assume that the advantages of the secure environment come
with a price: the TCP’s internal computation environment (e.g., processor speed
and memory size) will be small in comparison to standard desktops. Conse-
quently, the TCP will likely function as a coprocessor, attached to a larger host
machine that cannot be trusted against the adversary.

We also implicitly assume that the security comes with a monetary price as
well; hence, most of the applications place the TCP at a server site, better able
to afford the cost and amortize it over a larger pool of clients and transactions.

9.2 Hardened Web Servers
9.2.1 The Problem
Web Security. The Web is currently the main vehicle for information ser-
vices in our infrastructure. To quickly review, the client (that is, the browser)
sends a request to a remote server, which then responds with data (typically, in
html format) which the browser renders for its human user. Without additional
countermeasures, these exchanges take place in plaintext, exposing the data to
scrutiny and potential modification by the adversary. Similarly, the browser
user cannot be sure whether he has really established a connection to the in-
tended server, or whether the adversary (by some DNS attack or other ruse) is
impersonating the other end.

The secure sockets layer (SSL) has emerged as the standard way to address
these risks. Like most protocols that make it into real world deployment, SSL
has many variations. In its most typical use, a secure Web server possess a
key pair. Only that Web server knows the private key (one hopes); one of
the CAs whose public key is built into the browser’s store of trust roots signs

Application Case Studies 143

a certificate binding the corresponding public key to identifying information
about the server. When the browser initiates an SSL connection, it does some
basic validity and sanity checks on this certificate. The server proves knowledge
of the private key; and the pair establish a session key and use this (via symmetric
cryptography, with a MAC or hash) for the rest of their session.

If the server keeps its private key private (as well as the session key, and the
parameters that led to its generation), then the use of the symmetric cryptog-
raphy protects the data the parties exchange from modification and (plaintext)
observation by the adversary. Each party might also reasonably conclude that
the same entity is on the other end of the channel throughout the session—for
otherwise, how would an adversary have known the keys?

If the browser and its user properly check the signature and data on the
server’s certificate at the start of the session, then, in theory the client might
also reasonably conclude that the server is who they say they are. In practice,
one might reasonably challenge whether these browser checks are reasonable,
or whether clients notice if they fail, or whether the certificate even contained
appropriate information in the first place. However, that is material for a dif-
ferent book.

Common SSL variations include servers that use a self-signed certificate
(which sacrifices server authentication), servers that use a non-standard trust
root (which requires that the relying parties install that root in their browsers),
and installations where the client also has a certified key pair and proves knowl-
edge of the private key as part of the initial handshake.

Armored Car to a Cardboard Box. However, a problem with using SSL to
“solve” the Web security problem is that it only protects the tunnel between the
browser and the server, and (in the standard instantiation) it only authenticates
the server identity. Consequently, it becomes the proverbial2 “armored car from
a park bench to a cardboard box.”

What happens to the data once it gets to the server?

What assurance does the client have that the server, even with that identity,
is actually providing that service?

Indeed, I found an early inspiration for this problem when I was shopping for
a bicycle component, and found the cheapest price at an online merchant I had
never heard of. SSL assured me that my transaction could not be eavesdropped,
and told me what the name of the merchant was. However, what I wanted to
know was whether I could trust them to carry out this transaction (and not create

2Stressing the importance of matching security across components of a system, this proverb is a now-standard
metaphor in security folklore.

144 TRUSTED COMPUTING PLATFORMS

a headache for me by misusing or accidentally leaking my credit card number);
their name does not tell me this.

9.2.2 Using a TCP
A natural way to solve this problem is

to bind a server’s SSL private key not just to that server, but also to the
application that server allegedly provides,

and then to put this binding beyond the reach of anyone, even the operator
of that server, to manipulate.

We could achieve this by welding the server end of the tunnel to the advertised
application and moving both inside a TCP at the server site. The server operator
obtains a TCP, then installs the application (augmented with the SSL tunnel end
code). As part of its initialization, the application generates the SSL key pair,
and uses the TCP’s outbound authentication feature (Chapter 7) to prove to
the satisfaction of a standard SSL CA that this TCP binds this public key to
that application at that server. The CA then issues a special type of certificate,
indicating this binding. (We might augment the browser to look for this special
certificate type and indicate that.)

In Section 9.2.3 below, we revisit this CA-certification scheme, and in Chap-
ter 11 we develop a more flexible approach.

Since we assumed that the TCP would be limited in computational power
compared to standard machines, putting the entire server inside a TCP would
not be feasible. Instead, the TCP with this application would function as a
trusted co-server, providing an authenticated and perhaps secret shelter for this
application, in way that client, server, and perhaps even other stakeholders could
reasonably trust.

(The somewhat tongue-in-cheek original name of the project, WebALPS,
emerged at lunch at IBM: “Web Applications with Lots of Privacy and Secu-
rity.”)

The participation of a trusted co-server in Web applications presents many
application possibilities.

Credit Card Transaction Security. The current Web infrastructure provides
secure transmission of a client’s information to the server—but what happens
there is anyone’s guess.

For example, consider the credit-card information and transaction amount a
client sends when he wishes to purchase something. An adversary who com-
promises the server (or a malicious server operator) can use this data to carry
out lots of mischief:

He can increase the amount of the transaction.

Application Case Studies 145

He can retain the amount but repeat the transaction many times.

He can use the credit card information to forge additional transactions.

This situation may significantly reduce the potential market for new e-merchants
without a pre-established reputation. (“Ribo’s Books has a cheaper price than
well-known Amazon, but how do I know that unknown Ribo will neither steal
nor accidentally divulge my credit card info?”)

To solve this problem, the TCP-housed co-server can trap the credit card
and transaction information, and then transmits it (within a safe cryptographic
channel) to the acquirer’s system. The credit card number data never appears in
plaintext at the server site outside the TCP; the server operator or a penetrator
has no opportunity to inflate the transaction amount; and (unlike SET) the client
need not change the way she operates.

Nonrepudiation of Client Authentication. Without a public key infrastruc-
ture for citizens, most Web users are forced to use human-usable authenticators,
such as userids and passwords. However, in the current infrastructure, these au-
thenticators are exposed to the server of unknown integrity. As a consequence of
this exposure, an adversary who compromises the server (or a malicious server
operator) can impersonate this user at that site, and at any other site where
the user has used these authenticators. This exposure also prevents legitimate
server operators from being able to argue that it really was a particular client
who opened a particular a session.

To solve this trust problem, the TCP-housed co-server can retain the the
password, authenticate the client, then issue a signed receipt for th server that
client properly authenticated for that session

Nonrepudiation of Client Activity. The current Web infrastructure prevents
a server from being able to prove anything to a third party about the activity of
an alleged Web client. For example, how can an insurance company taking an
application from Alice over the Web later prove that Alice really answered that
question that way? We would require a PKI for citizens, and perhaps a standard
way to incorporate user signatures in Web form requests. (Such signed form
support is not yet universally supported, unfortunately.)

For another way solve this trust problem that does not require these changes,
the TCP-housed co-server can also issue a signed receipt for the entire trans-
action. “Alice not only authenticated correctly, but she issued a request of type
X with parameters Y.”

Nonrepudiation of Server Activity. The current Web infrastructure prevents
a server from being able to prove anything to a third party about the activity of
that server in an interaction. For example, consider trying to prove something

146 TRUSTED COMPUTING PLATFORMS

about the questions that generated the answers a client provided. Case law
already exists that permits, in paper interactions, a client to alter a waiver before
signing it—and if the service provider accepts the form without noticing the
alteration, he is bound by it. For another example, some of my colleagues have
reported difficulty in U.S. Government security clearance processes, because an
answer to a question five years ago was not consistent with the current revision
of that question.

To solve, this trust problem, the TCP-housed trusted co-server can include,
in its signed receipt for the transaction, the prompts and responses the server
provided.

Taxes on E-Commerce. The current Web infrastructure provides no accept-
able means to balance the legitimate interests of a third party to accurately learn
certain information about individual or collective Web interactions, with the
privacy interests of the other participants.

For example, consider the problem of a government tax collection service
trying to learn how much sales tax an e-merchant owes them for last month.
Reporting all transactions to the government would be unacceptable to the mer-
chant and customer for privacy concerns. Reporting only a total amount owed
would be unacceptable to the government, since the figure would be unverifi-
able, and the merchant reporting this unverifiable figure would be motivated to
understate it.

To solve this trust problem, the TCP-housed co-server can monitor the total
tax owed by that merchant for the transactions that went through it (e.g., be-
cause of some other co-server application there), and report that authenticated
total back to the government revenue agency. The agency can trust that the re-
ported amount is correct; the merchant and customers can trust that the agency
learns only what it is supposed to—and, in particular, is not learning details of
transactions or identities of customers

Re-selling of Intellectual Property. The current Web infrastructure provides
no acceptable means for a third party who participates in an interaction indi-
rectly, by licensing proprietary information to the server, to protect their legiti-
mate interests. For example, a publisher who owns a large copyrighted image
database might wish to make this available to a university library—but might
worry that compromise of the university server will compromise the database.

To solve this trust problem, the TCP-housed co-server can receive a session
key and licensing rules from the owner of the intellectual property. The owner
would provide the intellectual property in ciphertext to the server; the co-server
would decrypt the particular items being used, and ensure that whatever licens-
ing/royalty/watermarking requirements were being enforced.

(Section 9.3 below expands on this idea.)

Application Case Studies 147

Privacy of Sensitive Web Activity. The current Web infrastructure provides
no means for a server operator to plausibly deny that he is monitoring all client
interactions. Similarly, the operator can cannot deny that an adversary who has
compromised his machine is monitoring this data.

For one example, Consider people who wish to obtain sensitive literature—
about health topics, for example, or about currently unfashionable politics.
What prevents the server operator from learning of their activity, and acting in
a manner (such as informing employers or health insurers) in way that would
unjustly compromise user privacy?

To solve this trust problem for the data retrieval case, the TCP-housed co-
server can implement some variation of an oblivious RAM algorithm that treats
encrypted storage in the server’s file system as the “RAM.” The client, through
the SSL-protected channel, makes her request to the co-server, which then
retrieves the record via the algorithm, re-encrypts it, and returns it to the client.
The server operator learns nothing3 except the fact that a query has been made.
Section 9.4 below will expands on this idea.

Correctness of Web Activity. The current Web infrastructure provides no
means for a server operator to establish that he (or an adversary who has com-
promised his machine) has not otherwise altered or corrupted important cor-
rectness properties of the service.

For example, suppose an auction server provides a bulletin board service
where customers can post “timestamped, anonymous, confidential” comments
about participants and interactions. How can customers know that the anony-
mous posts came from bona fide customers, and that the timestamps are correct?

To solve this trust problem, we move the computation critical to the appro-
priate correctness properties from the server into the TCP-housed co-server—
whose application program would need to advertise that it was performing
these computations. This establishes that the trusted co-server witnesses that
the alleged bona fide customers authenticated properly.

Enforcement of Logo Rules. The current Web infrastructure provides no
effective means for a party to ensure that logos or endorsements appear only on
the appropriate server pages.

For example, Dartmouth could establish a “Dartmouth-inspected” logo to
endorse servers who have withstood penetration testing by specialists. However,
any client who visits these pages can capture the logo and put it on any page,
whether or not that site has withstood the testing.

3Strictly speaking, the server operator learns ciphertext; however, we implicitly assume that the cryptosystem
is sufficiently strong that the adversary cannot distinguish it from random bits.

148 TRUSTED COMPUTING PLATFORMS

To solve this trust problem, the TCP-housed co-server could provide the
logo information, when appropriate. Logos that do not appear in the portion of
the browser window from an authenticated co-server-to-client channel are not
legitimate. (Amir Herzberg has recently prototyped some browser work this
vein [HG04].)

Safety of Downloadable Content. The current Web infrastructure provides
no means for the client to ensure that executable content downloaded from a
server is indeed safe. With the current continually penetrable state of consumer
platforms, safety depends on the client themselves actually running the latest
anti-virus software. Most consumers do not do this, leaving them at risk.

Moving the virus-checking computation (and the concomitant problem of
maintaining the latest updates of virus signatures) to the server is more efficient–
hut how can clients know the server really carried this out?

To solve this trust problem, the TCP-housed co-server could run the anti-
virus software with the latest signatures: either dynamically, as the co-server
was feeding data back to the client, or offline (but then, when the co-server
was feeding data back to the client, it would verify that it had indeed scanned
this data earlier). Clients could then trust that content downloaded via this
SSL-authenticated channel from the trusted co-server has been scanned.

Of course, without further optimizations, this application might tax the re-
sources of the TCP considerably.

Authenticity of Downloadable Content. The current web infrastructure pro-
vides no easy means for the client to authenticate the origin of downloadable
content. Posters of content can provide digital signatures, but then the client
needs to explicitly obtain and verify the trust chain on each item.

Moving this verification computation (and the concomitant problem of main-
taining the latest certificate revocation lists) to the server is more efficient—but
how can clients know the server really carried this out?

To solve this trust problem, the TCP-housed co-server could itself verify
the signatures of the posted content (using all the latest certificate revocation
lists, etc.), and then include in the SSL-encrypted channel an assertion that this
content had been verified, and the identity of its poster. The client Alice could
then trust that content she downloaded via this SSL-encrypted channel from the
trusted co-server did indeed originate with the alleged poster. (We can even save
bandwidth here, since the client only need download the poster’s identity—not
his public key, signature, and appropriate certificates.)

Integrity of Server. The current Web infrastructure provides no means for the
client to verify the integrity and site security of server machines.

Application Case Studies 149

For example, some servers may run on machines whose administrators who
run hardened operating systems and/or engage in other good security practices,
such as regular runs of a network security analyzer, or enhanced OS boot via
secure hardware (e.g., as Section 4.3 discussed).

However, any site can claim to do this. How can a client know?
To solve this trust problem, the TCP-housed co-server can witness that the

appropriate security tool (such as a network security analyzer or a particular
hardware-directed secure boot technique) was applied to the host—perhaps
because this tool was applied from the co-server itself, or from a companion
trusted machine. The client Alice can trust such assertions she receives through
the SSL-authenticated communication channel from the co-server to the client.

9.2.3 Implementation Experience
To see if the trusted co-server idea worked, we needed to implement it. At

IBM, intern Naomura Itoi started working on it after he finished his Kerberos
project (see Section 9.5.2 below) but failed to gain traction. When I moved to
Dartmouth, my student Shan Jiang picked up the idea and prototyped it for his
master’s thesis [Jia01].

For the co-server platform, we used the IBM 4758 Model 2, with the CP/Q++
OS layer. For the server platform, we used a Linux desktop, with the Apache
server (v1.3.14), which routes SSL work to the mod_ssl module (v2.7.1), which
then uses OpenSSL (v0.9.6) to handle the cryptographic work.

Building the prototype required dissecting the SSL protocol to identify the
minimum number of tasks we needed to move from the server to the co-server.

At an initial glance, we need to add eight messages (between the server and
co-server) for each SSL handshake. The co-server tells the server its certifi-
cate (which it forwards to the client); the server forwards to the co-server the
“Client Random” and “Server Random” messages; then the server passes on
the client’s “Encrypted Premaster Secret,” “Change Cipher Spec” (to indicate
the client is about to start using crypto), and encrypted “Finished” message.
The co-server then responds with a “Change Cipher Spec” and its encrypted
“Finished” message. However, we can reduce overhead by concatenating multi-
ple server/co-server messages in one transmission and eliminating unnecessary
ones. Figure 9.1 shows this revised handshake.

We then modified the server-side software stack to enable WebALPS and
to carry out this modified handshake (as well as session re-use) with the co-
server. Within the co-server, we used a hash table to track multiple concurrent
sessions. However, in our prototype, we send every SSL request through the co-
server. Having some sent through the co-server and some (of lesser sensitivity)
through the server might improve performance, but the ability of browsers (let
alone their users) to safely multiplex multiple SSL channels was not certain.

150 TRUSTED COMPUTING PLATFORMS

Figure 9.1. In our revised SSL handshake, the server forwards the key-derivation material to
the co-server; only the co-server knows the keys to handle the encrypted, MAC’d traffic with the
client. (Figure 4.6 from [Jia01].)

Our performance measurements sought to evaluate two things: how much
the co-server slows things down, and whether the co-server approach can handle
heavy workloads. The answers were “yes” and “yes,” respectively.

We did the speed tests using the http_load tool, with a client that sent random
requests for a 2KB file over a two-second interval. We measured served re-
quests per second, connection time, and request time (once the connection was
established), for an ordinary http server, an SSL server, and a co-server-enabled
server (with a null internal application). Table 9.1 shows the results: WebALPS
slows things down, but (as Table 9.2 shows) not by as much as SSL slows down
http. (Some other cryptographic benchmarking work we have done [LS01] sug-
gests that the CP/Q++ API to DES might be blamed for some of the slowdown.)

Application Case Studies 151

We did the workload test using the WebBench tool, which generates a rep-
resentative e-commerce workload of 92% http requests and 8% https re-
quests. We varied the tests over a number of clients and a number of threads per
clients, and measured both requests-per-second and bytes-per-second. Figure 4
in [JSM01] shows the result: the performance is slower than traditional SSL,
but things do scale.

Applications. With our prototype, the trusted co-server decrypts the ciphertext
sent by the client, and encrypts the plaintext the server wishes to send back.
The co-server thus has first crack at the plaintext the client sends, and last crack
at the plaintext to be sent back; it can remove sensitive data before it forwards
the plaintext input to the server, and add sensitive data on the way back out.

We built three different applications to demonstrate the applications security
that this co-server application might provide.

Jiang built a simple authentication application. A student can request his or
her grade via Web form, authenticated via name and password (as responses
on this form). The co-server receives the request, suppresses the password,
and then forwards this re-written request to the server. The server responds
with the encrypted record for that student. The co-server decrypts the record,
checks the password, and if things are OK, re-encrypts the response for the
client and sends it down the SSL channel.

152 TRUSTED COMPUTING PLATFORMS

Jiang and fellow grad student Kazuhiro Minami extended this to an elec-
tronic voting prototype: the co-server catches the user password and uses it
to authenticate the user with the Dartmouth Name Directory (DND) server,
and also provides a way to tally votes so that the correctness of the result
and the privacy of individual votes can be trusted against a malicious server
operator.

I later built a prototype of a “Box Office” server for Dartmouth. Essentially,
this is a credit-card scenario that does not require changing how the credit-
card acquirers accept charge information. Many entities (such as theater
groups and athletics) at Dartmouth wish to sell tickets online; our computing
services group is happy to set up a server, but would rather not have the
liability of exposure to customer data. Consequently, they set up an Apache
server that immediately PGP-encrypts customer orders and emails them to
the appropriate on-campus entity. Our co-server prototype instead captures
the customer data internally and (via a stripped-down and ported GPG)
encrypts the data internally, so it never lives in plaintext at the server, outside
the TCP.

Although somewhat successful in the lab, this co-server approach has not
yet found broader use. One set of obstacles is the awkwardness of porting
existing code to the CP/Q++ environment, and the difficulty of debugging both
the host code and the coprocessor code in the same unified environment. A more
serious set of obstacles is the fact that the internal code space is limited. For both
these reasons, the modifications to Apache/mod_ssl/open_ssl were sufficiently
extensive that, by the time broader deployment was considered, we would need
to deeply re-examine these modifications due to upgrade creep in the software.

Furthermore, we would face the problem of the mismatch between the rel-
atively long lifetime of a typical SSL server keypair and the relatively short
lifetime of the server software configuration.

In Chapter 11, we examine a way to overcome these obstacles.

9.3 Rights Management for Big Brother’s Computer
9.3.1 The Problem
Initial Motivation. The University of Michigan’s Packet Vault project [AUH99]
sought to produce archives of LAN traffic, for later forensic analysis (e.g., in
case a sysadmin needs to investigate if a newly discovered attack signature had
a longer history on that LAN, or in case the university needs to respond to
subpoena).

At the time, simply producing such an archive was a significant engineer-
ing feat. Beyond this, to protect the privacy of the network users, the vault
encrypted each host-to-host conversation with a different symmetric key, and
then encrypted all of these keys with the public key of the vault owner. The

Application Case Studies 153

intent was that an adversary who obtained an archive CD-ROM could not learn
plaintext contents of the traffic. The owner would make a case-by-case deci-
sion on whether contents should be revealed; if so, the owner would decrypt
the appropriate content key so that the content requester (e.g., law enforcement
or a sysadmin) could have access.

However, this cryptographic approach still leaves significant privacy con-
cerns. For one thing, disclosure must occur on the granularity of a host-to-host
conversation, specified by this pair of hosts. Selecting items by the plaintext
contents (“packets with attack signature X ”) is not possible, nor is disclosing
only statistics or sanitized data. More significantly, this approach forces all
stakeholders to trust in the future good will and good luck of the vault owner.
A vault owner may obtain community acceptance, before starting the vault, by
promising to abide by pre-agreed law and policy standards. However, should
an adversary—or a rogue insider—gain access to the private key, then these
promises no longer apply.

This situation is particularly troubling, given the nature of humans to try
to exceed authority (and the common frequency of this in law enforcement).
Indeed, the controversy over the Carnivore proposals demonstrated this tinder-
box.

Broader Picture. Initially, these issues arose as some security challenges in a
project some friends were working on. However, these issues also some deeper
ramifications regarding socially responsible computing. In the standard DRM
scenario (that engenders some much debate—recall Section 2.6), a centralized
player with enormous economic powers send data to relatively powerless indi-
viduals, but tries to compel them to abide by the central player’s policy when
using this data. A Packet Vault is just one of many scenarios in our society when
individuals share their data with a powerful central authority. Can we turn the
tables, and build a DRM system that forces the central authority to abide by the
individuals’ rules?

9.3.2 Using a TCP
Our building block—a high-end TCP—can protect data and computation

even from an adversary with direct physical access, and has hardware support
for fast cryptography. These features naturally suggest a way to put armor
around the packet vault.

For simplicity of presentation (and also to improve performance), we use a
pair of TCPs:

One TCP runs an encoder application. The Encoder uses a TCP’s crypto-
graphic abilities to quickly encrypt externally supplied data with a random
symmetric key. It can use its outbound authentication features to sign (and

154 TRUSTED COMPUTING PLATFORMS

even timestamp) this archive. The Encoder then binds the archive to an ac-
cess policy and encrypts the symmetric key with public key of a designated
Decoder.

The second TCP runs the Decoder application. The Decoder accepts an
encrypted archive, and a request to examine the archive. It verifies whether
the archive is authentic and whether the policy bound to the archive permits
this action. If so, the Decoder carries out the request within its secure
boundary, prepares the result, and (if appropriate) signs it, encrypts it for
the requester, and sends it back.

This TCP-based approach adds security. Because of the TCP’s outbound
authentication, stakeholders can have assurance that access to the sensitive data
will follow the pre-agreed policy. Because of the TCP’s physical security, stake-
holders can have assurance that attempts by an adversary or rogue insider to
otherwise gain access will result in denial (if the adversary tries the program-
matic route) or the destruction of the data (if the adversary tries physical attacks
instead).

This TCP-based approach also adds flexibility. Having a computational
engine examine the data within a secure box gives us the ability to do searches,
queries, and post-processing not easily possible with cryptographic protection
alone. Even negative results—such as a signed statement saying “no records
matching that pattern existed in this archive”—are now possible. Depending on
how much state the Decoder can retain, we might even be able to limit queries
based on time (“not more than 1 packet a second”) and history (“party X can
only ask three times a week”).

9.3.3 Implementation Experience
Initially, I sketched out some design ideas with Charles Antonelli and Peter

Honeyman of the Packet Vault project [SAHOO]. However, my colleagues were
suspicious of the feasibility (e.g., “I’ll believe it when I see it”). This task fell
to student Alex Iliev, in his senior thesis and subsequent PET paper [IS03b].

We built the Encoder and Decoder on an IBM 4758 Model 2, with the CP/Q++
OS layer. A Linux PC acted as the host for both. The Encoder supports
operations to set up its Decoder, and to produce a TDES-encrypted archive of
a network dump in libpcap format. The bulk TDES rate of the Model 2 is (in
theory) sufficient to keep up with a vault on a 100Mb network.

To examine the archive, the Decoder uses Snort, which featured IP defrag-
mentation and which examined and selected packets both using the Berkeley
Packet Filter language and its own rules. We ported a subset of Snort to run
inside the TCP. This task included writing simulations of POSIX syscalls that
Snort required but CP/Q++ did not provide. Archive examination requests are
framed as Snort rules.

Application Case Studies 155

In our prototype, we represent the access policy as a table; the rows represent
entry points for access, and the columns represent parameters that a request via
that entry point must satisfy. These parameters specify the required authoriza-
tion, and any macro limits (such as total number of packets). Our prototype
receives this policy as XML.

To simplify the prototype, we did not authenticate requests, and we did not
do post-processing.

9.4 Private Information
9.4.1 The Problem

Let’s reconsider the “privacy of sensitive Web activity” example from Sec-
tion 9.2.2. One can think of many examples of where a server might offer a
range of material to a client, but the client may regard his or her choice of
material as sensitive, and want to preserve privacy of this choice.

As above, suppose the server is offering information about health topics. In
the current climate in the U.S., certain health issues (such as mental illness)
are considered embarrassing in many circles, and may disqualify one from
jobs and security clearances. Others (such as cancer or AIDS) can entail
expensive treatment, which a thrifty but unethical employer might rather not
subsidize.

Consequently, a client might rather not have details of his health queries
leaking out.

Suppose the server is offering patent information. When an industrial re-
search and development group is developing a new product, they often regard
details of this new product as secret, until its announcement. During this
period of secrecy, however, the group might engage in many related patent
searches, in order to prepare their own patent applications to protect their
new inventions.

Consequently, a client might rather not have details of his patent queries
leaking out.

In many standard PKI settings, an enterprise maintains a online directory of
public key certificates for its members. In applications where Alice wants
to send Bob encrypted mail but has not talked to him already, she will need
his certificate, and thus need to query this directory. In some scenarios, the
presence or absence of a certificate in the directory itself carries meaning;
for example, some enterprises revoke a certificate by removing it from the
“current” directory. As a consequence, Alice might need to contact the
directory for other PKI applications as well, such as verifying a signature
from Bob.

156 TRUSTED COMPUTING PLATFORMS

If Alice or Bob would rather keep the existence of this interaction private,
then they might rather not have details of these certificate queries leaking
out.

In all these situations, a client might be willing to negotiate an SSL session,
request their record, and receive the data through the encrypted SSL channel.
The client is probably not willing to do any more work than that. However,
the SSL channel only provides privacy of the plaintext against an eavesdropper
(and even then, discloses that a query took place, and what the size of the record
was).

What if the server were the adversary?
Given human nature, some rogue employers might happily pay a small bribe

to learn which employees might soon have expensive long-term medical bills,
and some server operators might happily accept such a bribe.

Given the pressures of the marketplace, some server operators might be will-
ing to pay extra to offer a privacy-enhanced service (protected even against
themselves), for the competitive advantage it might give them. Given the ide-
ology of librarians, some libraries might happily pay extra to offer privacy-
enhanced data services, in order to be able tell government agents that the
library literally cannot comply with that request for an individual user’s access
history.

For another example:

Internet2’s Shibboleth middleware system seeks to enable institutions and
universities) to share material over the Web in a way that conforms to the
two institutions pair-wise policy, but also accommodates the legacy way that
authentication at the requestor’s site works. When Alice at University A
wants some material at University B , she authenticates at University A the
way she always does. University A then gives her an opaque handle X .
She sends her request to University B, which then asks her university for
the necessary attributes that X has, in order to decide whether to grant this
request.

Shibboleth uses the opaque handle in order to hide the identity of Alice
from the target site, University B . However, the attribute server at her own
university knows exactly who Alice is and what requests she issued—since
University B told it.

If this material is sensitive, Alice might rather not anyone know—not even
the attribute server at University A.

How can a server offer such a privacy-enhanced information service? Some
criteria here include:

The client must do no more work than open an SSL session, request a record,
and receive a response.

Application Case Studies 157

The server must be able to provide this service for reasonably-sized dataset,
and respond in reasonable time.

The server must otherwise learn nothing about the request, except that the
client made one.

(Again, in this analysis, we assume that cryptography effectively hides infor-
mation.)

Naively, one might assume that simply encrypting the records would work.
However, the server would still be able to learn statistics (“record 23 is the most
popular”) or correlations (“whoever asked for record 12 also asked for record
17”). Furthermore, if the adversary can also query the dataset, he could verify a
guess about record Alice asked for by asking for one himself, and seeing which
encrypted record the server fetched.

A related question is: can such a service also permit clients to add new
records, and update existing ones?

9.4.2 Using a TCP: Initial View
Theoreticians have studied versions of this problem as private information

retrieval. However, these approaches seemed too inefficient for real-world
practice, and departed from the SSL model that our criteria outlined.

Dave Safford and I considered this problem [SS01] and coined the term
practical private information retrieval (PPIR) for solutions that might satisfy
these criteria. We considered using a TCP as sketched in Section 9.1:

The protected execution and storage environments enable the TCP to nego-
tiate the SSL session, and then to receive and handle the client’s request out
of sight of the host.

The hardware to stream data across the boundary and through a symmetric
cryptography engine enables the TCP to quickly fetch and output encrypted
records.

The physical security and the outbound authentication features enable the
stakeholders to have assurance that the TCP is actually providing the privacy-
enhanced service it alleges.

We assume that the TCP can hold only a small constant number of records in
its internal storage.

We then explored how me might use a TCP to provide this service. We nor-
malize each record to have the same length. If we assume each record is stored
as a separate ciphertext on the host, and that the TCP does not retain records
internally between sessions, then we’re faced with an inevitable problem: to
process any one query, the TCP needs to read every ciphertext. Otherwise, the

158 TRUSTED COMPUTING PLATFORMS

server operator would know that an untouched record cannot be the one that
was requested.

This analysis suggested a naive algorithm. The client tells the TCP its request
over the SSL channel. The TCP reads in every record, decrypting while reading,
and retains the requested one. The TCP then sends the requested record back
to the client through the SSL channel.

With some thought, we can start improving this algorithm. For example, by
partitioning each record into “stripes” and encrypting each separately, we can
use TCP platforms in parallel to increase the speed by with a penalty
for record assembly. By keeping stripes small enough that we can fit inside
a TCP at once, we can handle queries at the same time, with only one pass
through the data. With a little more bookkeeping, we can even accept queries
at any time as we cycle through the records.

From these armchair calculations, the primary bottleneck would be the bulk
symmetric crypto speed. In theory, if the IBM 4758 Model 2 could achieve its
theoretical maximum of about 20MB/second TDES, then a farm of them might
start making such a service feasible. Moore’s Law would suggest the feasibility
would increase over time.

9.4.3 Implementation Experience
I did some initial prototyping of this idea, using a 4758 with the CP/Q++

OS layer. Although it showed the idea might be feasible eventually, it also
showed that feasibility was a long way off. For one thing, the crypto-across-the-
boundary hardware did not appear to support quickly bringing in data through
the TDES engine and also checking its integrity. This meant that we had to
stop at regular intervals and do a separate call, from inside the device, to check
a hash or MAC on the encrypted records. For another thing, the separation that
CP/Q++ introduced between application code and the raw hardware made it
hard to achieve the maximum hardware speed for short records, as some other
work had shown [LS01].

However, this work did prompt Dmitri Asonov and Johann-Christoph Freytag
at Humboldt University to start their own experiments [AF03, Asn04], leading
to an ongoing series of results by Asonov and by my student Alex Iliev.

Asonov’s Idea. Asonov used the TCP’s private execution and storage envi-
ronment to produce a permuted shuffle of the encrypted records.4 That is, the
server ends up holding a sequence of ciphertexts The server knows
that each is the encryption of some plaintext record However, the server

4This approach is essentially the “square-root” algorithm from [GO96], as we will discuss later.

Application Case Studies 159

does not which matches with Only the TCP knows the permutation, and
the keys.

It is important here to stress that, in this discussion, the term permutation
differs from the term shuffle.

We use “permutation” to refer to the function on the index space that
captures this mapping. That is, just takes integers to integers, such that if
ciphertext matches plaintext we must have

We use “shuffle” to refer to the array of ciphertexts

Suppose the system starts out with a fresh shuffle. The TCP receives a
request for record from the client. The TCP uses its private knowledge of
the permutation to determine that ciphertext matches this record. The
TCP retrieves this ciphertext, decrypts it internally, and checks that it is the
right one and that it is not corrupted. The TCP then sends the plaintext down
the SSL channel for the client. The host learns that contains the record
that was requested, but does not know what’s in there.

When the second request comes, we have two possibilities.

If then this request is for a different record. The TCP realizes that
it must look at However, the TCP fetches both and
so the host does not know whether or not this second request was the same
as the first.

If then the request is for the same record, The TCP selects a
random encrypted record that it has not asked for yet—say for some

The TCP and asks for both and so the host does
not know whether or not this second request was the same as the first.

In general, for the kth request after a fresh shuffle, suppose
are the k – 1 distinct indices of the ciphertexts that the TCP has touched so far
in this shuffle. To process this new request the TCP does our naive PPIR
algorithm on the set consisting of these k– 1 ciphertexts, plus one more,
that appears randomly selected. Thus, we can reduce the per-query processing
from (fetching each of N records) to —but at the price of doing a
shuffle whenever this k got too big. Asonov’s scheme used an shuffling
algorithm: for each the TCP reads in through and then saves and
outputs re-encrypted.

Prototype. Alex Iliev and I decided to implement this idea, for a Dartmouth-
sized directory of X.509 certificates [IS03a]. Our architecture used three
IBM 4758 Model 2 platforms (although we switched from CP/Q++ to an ex-
perimental Linux kernel in Layer 2, to make development and porting easier).

160 TRUSTED COMPUTING PLATFORMS

Figure 9.2. A switch either sends each input to its corresponding output, or switches them,
depending on the setting of the control bit.

One TCP handled the SSL connection and the LDAP requests issued by the
client.

One TCP handles each query, from a current shuffle. We also set up some
hashing to handle the fact that clients tend to ask for certificates by user
name, but the PPIR schemes use index numbers.

One TCP spends its time generating new shuffles.

The sustainable query rate (or, with a bit of massaging, the maximum query
response time) is determined by the time it takes to do the shuffle.

Unfortunately, the shuffling took too long. Shuffling 1000 records took 5
hours, and we estimated that shuffling 10,000 would take 3 weeks.

9.4.4 Using Oblivious Circuits
We need a quicker way for the TCP to generate an encrypted shuffle.
To do this, we started thinking about what we called oblivious circuits. We

start with the basic idea of a switch gate: a box with two inputs, two outputs,
and a control bit. The switch sends each input line to an output line; the setting
of the control bit determines which mapping it uses. (See Figure 9.2.) We
can wire these switches into acyclic circuits that take a set of input lines to a
set of output lines. Any given circuit computes some family of
mappings, but which element this circuit computes depends on the settings S
of the switches.

Now, suppose we take such a circuit, but make each gate a black box, such
that the adversary can see neither the control bit nor the internal activity of
the switch. Suppose also that we make each internal wire of the circuit (as
well as the outputs) encrypted tunnels, with appropriate randomness so even
repeating the same data yields a different observed ciphertext. We now have
an oblivious circuit. The adversary can observe the circuit and know that the
circuit is performing some member of F . However, since the adversary does
not know the switch settings S and cannot learn anything from observing the
wires, he does not know which member of F it is.

Application Case Studies 161

Given this observation, we can take two more steps. First, our TCPs are
rather good at emulating an oblivious switching network. For example:

We put the switches in some serial order, consistent with their wiring de-
pendence.

We label each wire by a pair of numbers: the index of the gate it goes into
and the index of the input into this gate.

We use a good PRNG K that takes a a secret master key known only by
the TCP, a nonce (also known only by the TCP) for this emulation session,
and a pair of wire numbers, and then outputs a good key for our symmetric
cipher. The TCP uses K to generate the key schedule for the internal wires.

We then step through the gates. For each gate, the TCP reads in the inputs
from the host, decrypts them as they come in, and checks integrity, freshness,
and whether they are the right records. Based on the setting of the control
bit for this switch, the TCP sends the records back out again—first output
0, then output 1, encrypted appropriately. (We need be careful about the
timing to ensure that the adversary cannot use operation duration to make a
good guess about the control bit.)

A circuit with G gates takes G operations to simulate. (Later, we’ll use similar
techniques for oblivious sorting networks and oblivious merging networks; we’ll
consider the problem a bit further in Section 9.6.)

For our second step, we observed that Beneš networks [Wak68] provide a
clean way to build a compact o(N logN)gate oblivious switching circuit such
that, for any permutation on N items, there exists a way to set the control bits
so that the circuit carries out that permutation. (See Figure 9.3).

Thus, we can reduce our shuffling step from to N log N operations, by
having the TCP generate the random permutation, calculate the control bits
for this permutation, and then emulate the Beneš network obliviously. When
we implemented this Beneš approach, the 3 weeks shuffle time reduced to one
hour; and for the Dartmouth-sized X.509 directory, we can handle a sustained
rate of one query every three seconds.

Hypothetically, we could also have used comparator gates to build an oblivi-
ous sorting network to carry out the permutation. A comparator gate decides to
swap inputs by comparing some specified field within the input plaintexts (un-
like a switch gate, which uses a pre-set control bit). However, the AKS family
of o(N logn) sorting networks prohibitively large constant factors; Batcher’s
bitonic sorting networks are more reasonable to construct, but still would require
a factor of more gates than a Beneš network.

Oblivious RAM. Back when we were discussing the encrypted-bus approaches
to secure hardware (in Chapter 4), we mentioned that a natural question is how to

162 TRUSTED COMPUTING PLATFORMS

Figure 9.3. A Benes network can shuffle N inputs according to any permutation; it all depends
on how we set the control bits on the o(N logN) switches. If we make these switch gates
oblivious, so that the adversary can see neither the control bits nor the plaintext on any wire after
the inputs, then the network can shuffle N records obliviously.

keep the adversary from learning anything about the computation from watch-
ing the bus traffic. Ostrevsky and Goldreich [GO96, for example] developed a
series of oblivious RAM (ORAM) algorithms to address the problem of how a
CPU can an access an encrypted memory store, such that an adversary watching
the bus cannot learn what the CPU is doing.

Essentially, the oblivious RAM problem is isomorphic to our way of using a
TCP to carry out practical private information retrieval. The TCP corresponds
to the CPU and the encrypted records correspond to the RAM; the address the
CPU wishes to access corresponds to the record index the client requested via
the SSL tunnel. In fact, the Asonov shuffle-and-fetch scheme corresponds to
the older “square-root” ORAM algorithm of [GO96]. Our Beneš implemen-
tation provides an asymptotically and practically more efficient way of doing
the shuffle; an exploration of the asymptotically superior “polylog” ORAM
algorithm shows it would be inferior in practice for

Asonov’s Follow-on. In private communication and later in [Asn04], Asonov
suggested a further improvement. If we sliced the records into small enough
stripes that N could be brought into the TCP at one time, then we could use
the linear-time permutation made possible by the fact that a CPU can access
its addressable memory locations in constant time. We are not sure whether
this approach would be effective in practice with current hardware, due to the
poor performance of the symmetric crypto engines on small data sizes, and the
overhead of having to knit these stripes together. However, we look forward to
further experimentation.

Application Case Studies 163

9.4.5 Reducing TCP Memory Requirements
In more recent work [IS04b], Alex Iliev and I have pursued some different

directions.
First, we considered the problem of reducing the internal memory require-

ments for the TCP. Let us assume we have N records ofM bytes each. Already,
the area of TCP-based PPIR implicit assumes that the internal memory is less
thanO(N M): because otherwise, the TCP could just house the entire plaintext
dataset. However, we also had an implicit assumption that the memory was at
least O(N logN) bits.

The TCP needs to know the random permutation, during the shuffle steps and
during the retrieval steps. The natural way to write down the permutation
takes N log N bits: an array indicating the destination of each entry.

The TCP needs to be able to calculate the setting of the control bits for the
Beneš network. From our exploration, it appears to be an open problem
whether this can be done in less than N logN space. (We even tried in-
stead to see if a pseudorandom setting of a Beneš network would yield a
sufficiently random permutation, but without success.)

However, we developed a technique that reduces the internal TCP memory
requirement to O(k logN) bits, while keeping the time requirements the same
(except for a slightly longer penalty for performing the initial shuffle). Here, k
is the maximum number of queries received for a shuffle. If we regard that as
constant (fixed, in order to cap the maximum response time to a query), then this
is arguably optimal, since the TCP requires O(logN) storage just to receive a
record index.

Permutations. To start with, we cannot generate a random permutation func-
tion with only logN space. Instead, we use a short-cut: a seven round Luby-
Rackoff-style cipher on logN -bit blocks [LR88], using the TCP’s hardware
TDES engine for the pseudo-random function. With this approach, we can
take a logN -bit key both to a pseudo-random permutation as well as to its
inverse. (In more recent work, we have been exploring the stronger properties
of unbalanced LR ciphers.)

Initial Shuffle. To generate the initial shuffle, we pick a key for the permuta-
tion. Since we do not have the space to calculate the Beneš network settings
for this permutation, we have to settle for a different approach. We read each
plaintext record, append its destination under the permutation, and output it
encrypted. We then implement a standard sorting network obliv-
iously. Thus, we pay for the first shuffle, rather than than the
O (N logN) we were paying before.

164 TRUSTED COMPUTING PLATFORMS

Subsequent Shuffles. Suppose the dataset is currently shuffled under permu-
tation function We generate the next shuffle as follows. First, we generate
a new permutation Let T be the set of records that the TCP has examined
since the last shuffle. Let be the remainder. We assume that we set a maxi-
mum constant size k for this T, in order to bound the query response time. We
also assume that the TCP has internally recorded a list of the items in T (which
takesklogN bits).

Intuitively, what we do might be explained by an analogy to a deck of cards.
Imagine we have shuffled them, and then laid them in a row face down. Starting
from the left, we have turned over the first k. This corresponds to the set T; the
set is what remains.

In the old scheme, we would collect all the cards back into a deck, and then
do an expensive re-shuffle of the whole thing.

However, we could note that is already pretty well-shuffled. So instead,
we collect the T into a deck and do an expensive re-shuffle of that. We then
collect into a deck, and then obliviously merge the two (e.g., with a single
shuffle of the two decks together).

The adversary would know that the relative order of the elements in the
new shuffle is the same as their order before. But since he did not know
what they were, it is just as random.

This approach does not work for us, however, because we need to be able
to easily calculate the mapping from index to shuffled location, and this
approach of completely preserving the old order makes it too complicated.

So instead, we do a modification. We collect the T into a deck and do an
expensive re-shuffle of that. We then just move around the cards, face
down: we pick one, and move it to the left end; we pick another, and move
it after that, and so on. We pick these by the value of the plaintext index,
under the point here is to get ordered by (i).

Then we collect these into a deck, and obliviously merge the two.

More formally, the reshuffle consists of first processing T, then processing
and then merging.

Processing T, As we noted, we assume the TCP has stored a list of the
indices of the elements in where were
the requests sent in this last round.

The TCP reads in each ciphertext appends it with the tag and
sends it out encrypted.

The TCP uses this list and to calculate settings for the Beneš network that
would permute these ciphertexts to the relative order these indices would
have under (This takes k logk. space.)

Application Case Studies 165

The TCP then carries out this permutation obliviously. We now have a set
of ciphertexts for T, ordered by (and internally labeled with) the image of
their index under

Processing From the above, the TCP builds internally a sorted list of
The TCP then walks through an index j, from 1 to N . This index

corresponds to locations in the new shuffle. Because the TCP has the above
sorted list, it can determine whether j is in the list or not in constant time.
If not, the TCP calculates reads in the ciphertext record r
(in the current shuffle), appends j as its new location, and sends it back out,
re-encrypted.

We now have a set of ciphertexts for ordered by (and internally labeled
with) the image of their index under

Merging. The TCP then merges these two ordered sets using an oblivious
version of a merging network (e.g, as described in [CLRS0l]).

The space cost of this operation is bounded by O(k logN) bits—but we assume
k is constant. The time operation is bounded by O(N logN).

9.4.6 Adding the Ability to Update
We also worked on allowing the client to change record contents during a

request, rather than just reading it [IS04b]. This task required dealing with three
challenges:

how to keep the server from learning which request was a write and which
was read;

how to protect against replay attacks; and

how to deal with the fact a shuffle generated in parallel to query sessions
will be stale before it can even be used.

Reads vs. Writes. We can keep the server from distinguishing reads from
writes by having the TCP regard all operations as writes. When a request
comes in, the TCP fetches the current “touched set” T and a new ciphertext,
and re-encrypts all of them to produce the new “touched set” T, to be read in
when handling the next request.

(This model still requires that a client not increase the record beyond some
maximum size; we also do not yet let a client create a new record.)

Replay. As a consequence of allowing write operations, the ciphertext for
any given record will change each time the record is touched. Naively, this
situation might introduce the risk of replay attacks: with the multiplicity of

166 TRUSTED COMPUTING PLATFORMS

ciphertexts for any one record, the adversary might substitute an old one—that
is correctly formatted and encrypted, and will pass integrity checks, but contains
data that is out of date. We considered various approaches, both simple (store big
tables of hashes) and sophisticated (use Merkle trees). However, a simple and
concise technique works: the TCP remembers some temporal information—
which shuffle, and which query within that shuffle—then tags each plaintext
with that, then checks each plaintext for the right tags.

Stale Shuffles. The biggest challenge arises when re-shuffling. In order to
avoid downtime, we need to have one TCP generate the next shuffle while
another handles client queries using the current shuffle. Both the re-shuffler
and the query handler start with the same set of ciphertexts—but the query
handler will change them during its work, making the re-shuffler’s output stale.

We solve this problem by adding another dataset to the picture.
Until now, we had two datasets on the server: T and Each record cor-

responds to exactly one ciphertext, that lives in one of these two sets. With
each new query, the TCP moves one record from to T, and also reads in
and re-encrypts all of T in order hide the identity of the record the client was
interested in. We start with a shuffle with a full and an empty T.

Suppose a small number (k or fewer) of the records in were incorrect,
but we wanted to hide which records these were. For this shuffle, we could
add a third adjustment set A which contains the corrected ciphertexts for these
records. Now when the TCP receives a query:

It moves a record from to T, because the queried record could have been
one of the ones in

It reads in all of A —because if the queried record was in then it could
have been one of the ones in that had an error.

It reads in all of T —because the queried record might have been one of the
ones that had already been touched.

It outputs a re-encrypted T, reflecting the update just performed.

Basically, we just have a new set A that we read in along with T each step;
however, A does not change.

Suppose we started a round with a freshly shuffled dataset and a correction
set

The query-handlingTCP then initializes to and starts handling queries
based on and

The shuffle-generating TCP starts generating shuffle based on and
There a number of ways to do this; perhaps the clearest is to pretend the

Application Case Studies 167

client then writes each element of to 0á That is, session i- 1 had ended
with a and For each element of the TCP reads it in, moves
an element of to and then re-encrypts We end with a
and we proceed with the algorithm of Section 9.4.5 to generate

At the end of sessioni, we have a that reflects the touches that happened
to corrected with and a new shuffle of corrected with
We set to and continue.

Latest Performance. We modified our prototype from Section 9.4.4 to carry
out the reduced memory approach of Section 9.4.5 and the update feature of
Section 9.4.6, and noticed an improvement in overall performance.

However, what we found exciting was the ability to now protect large datasets
with limited memory devices—particularly given the advances of smaller TCPs
(e.g. Chapter 12).

9.5 Other Projects
Other applications based on this family of TCPs have been developed and

proposed. We quickly review some.

9.5.1 Postal Meters
Following in the shadow of Bennet Yee and Doug Tygar (Section 4.1.4),

commercial firms including Neopostage, Pitney-Bowes, and PSI Systems have
used the IBM 4758 TCP platform as a component in Internet and PC-based
postage meters.

9.5.2 Kerberos KDC
Naomura Itoi used an IBM 4758 Model 1 platform with CP/Q++ to protect

the Key Distribution Center (KDC) in the Kerberos distributed authentication
protocol [Ito00]. In Kerberos, the KDC is the central trusted third party, holding
all parties’ keys. If the adversary can compromise the KDC, he can impersonate
any party in the system.

9.5.3 Mobile Agents
Researchers including Bennet Yee have explored using a TCP to provide

increased security for mobile agents [Yee99].

9.5.4 Auctions
Adrian Perrig, Dawn Song, Doug Tygar and myself examined the use of a

TCP meeting the basic sketch of Section 9.1 to provide security and flexibility
for electronic auctions [PSST02].

168 TRUSTED COMPUTING PLATFORMS

Recall the scenario of Section 2.5— each participant sends the auctioneer his
or her bidding strategy, rather than casting bids in real time. The auctioneer then
plays the strategies against each other and announces the winner. Why should
any given participant trust that the auctioneer did not disclose his strategy to a
rival? (Bob would probably be happy to know the minimum price Alice would
accept for an item.) Why should the stakeholders trust that the announced result
really followed from the fair competition of the submitted strategies?

For another example, consider auctions with non-trivial rules for data disclo-
sure and winning. If the winner is to pay the second-highest bid price, how can
the winner verify the auctioneer is reporting the correct value? If the auction is
only supposed to reveal the name of the winner, how can the participants trust
that the auctioneer will reveal no other names?

Cryptographic approaches can provide ad hoc, inefficient solutions to spe-
cific instances of some of these problems. Using a TCP can provide a general
solution: the programmability gives the auctioneer flexibility to set up various
types of auctions; the physical security protects the auction from external ma-
nipulation; and the outbound authentication lets the stakeholders verify that the
auction might indeed follow its alleged rules.

9.5.5 Marianas

Another family of TCP application is the NSF-funded Marianas project,
started by Dave Nicol, Chris Hawblitzel, and myself. The idea of Marianas is
to merge TCPs with peer-to-peer (P2P) networking. P2P has been the bane of
the music industry, because the self-organization and decentralization of such
networks make them very hard to suppress. Using P2P between TCPs would
enable us to build an overlay network that is survivable and distributed (because
of P2P) but also trustworthy (because of the TCPs). Marianas thus might enable
us take tradition trusted third party protocols and make them distributed and
survivable.

As an initial exploration of this idea, John Marchesini and myself added
authentication and security to Gnutella, ported this into the IBM 4758 TCP, and
used the resulting P2P/TCP network to build virtual hierarchies, an approach
to inter-CA PKI architecture that provides the resiliency of mesh architectures
with the efficiency of hierarchies [MS02].

As another application of this idea, Gabe Vanrenen and myself [VS04]
used P2P with TCPs to distribute Boneh and Tsudik’s Semi-Trusted Media-
tor [BDTW01] approach to PKI. In this project, we built prototypes using
JXTA—but did not port the prototypes into actual trusted hardware.

Application Case Studies 169

9.5.6 Trusted S/MIME Gateways
Another family of applications we considered was using a high-end TCP

to provide a trustworthy way for an enterprise (particularly an enterprise such
as a college or university, full of unmanageable free-thinkers) to add PKI to
Web-based email clients.

Where should the private keys live?

Having users carry their keys with them is expensive.

Having users download their keys to a local client machine is awkward and,
in many settings, risky. Will users delete their keys afterwards? Does the
machine house a Trojan?

Having a back-end server store and use the keys raises trust issues. Why
should the user trust the server?

Furthermore, no one really wants to change their mail environment. Users
of Web-based clients want to be able to check email from any machine that
provides a suitable browser.

In his senior thesis, Evan Knop [Kno01] explored the idea of using a TCP-
housed co-server to hold and wield private keys, for S/MIME mail. Evan
also examined the logistics of trying to “multiplex” SSL sessions from a high-
security co-server and a lower-security host server.

In her senior thesis, Mindy Periera [Per03] followed up on this work by
exploring the use of a TCP co-server as a gateway between an enterprise’s
mail server and its clients. This approach would permit all users to continue
using whatever client they wanted, and would free our PKI deployment lab
from having to worry about S/MIME compatibility of all known mail clients.
Mindy developed several prototypes; however, we were never able to make the
footprint sufficiently small to live inside the 4758 TCPs we had available.

9.5.7 Grid Tools
The Grid project seeks to enable researchers at distributed universities and

laboratories to share computational resources. Grid researchers have developed
a suite of PKI tools to handle some of the authentication and delegation problems
that result. For example, Alice at University A needs not only to “log in”
somehow to a machine Bianchi at University B —she also needs to leave a
long-lived process running there that can continue to act as her by accessing
her data.

J. Novotony and his colleagues developed the MyProxy tool as a central
repository for PKI credentials in Grid applications [NTW01]. To try to address
the security risks of having a populations’ private keys in once place, Markus
Lorch and his colleagues then moved the private keys and the crypto routines

170 TRUSTED COMPUTING PLATFORMS

that handled them into an IBM 4758 [LBK04]. More recently, John Marchesini
here at Dartmouth has been working on moving the computation that calls these
routines into the TCP, as well as extending to other types of TCPs [Mar04].

9.6 Lessons Learned
We conclude this chapter with a few observations gained from this experience

designing and building applications.

Programming Environment. The closer the TCP could provide to a standard
programming environment, the easier the process was—and the easier it was
to build and test ideas, rather than having them languish on the shelf. For one
example, switching from CP/Q++ to Linux for our 4758 experiments let us use
the standard GNU suite of build tools and debuggers, and made it far easier to
port existing software into our environment.

Threat and Failure Models. When considering whether and how to deploy
these applications in real settings, questions emerged regarding what may hap-
pen should these TCPs fail. In the case Itoi’s hardened KDC, one colleague
recalled a model of disk drive where every unit failed, due to a component
problem, and wondered: what if every IBM 4758 fails, due to some hardware
problem? Even if the design works and these units treat the failure as a tamper
event, an enterprise that used such a TCP as the sole holder of the KDC could
have a problem. This scenario suggests the need for some thinking about how
to use heterogeneous TCPs to increase reliability without decreasing security.

In our Marianas project, which targets eventually using heterogeneous types
of TCPs, the question arose about what happens should an adversary compro-
mise a platform. In the current information infrastructure, security flaws usually
do not affect just a single instance of a system, but rather compromise a large
family of systems—any instance with that flawed software, for example. In our
current estimation of physical security attacks on TCPs, we speculate that the
adversary might need to take such a TCP into a laboratory and experiment a bit
before discovering a successful attack. Together, these scenarios suggest the
need for some thinking about how to model the threats for such a system: for
example, perhaps we should assume that if a particular device disappears for
some period of time, then the probability increases that all devices of that class
may be compromised.

New TCP Models. One of the exciting aspects of our private information work
(Section 9.4) was its suggestion of the value of new computational models.

On a basic level, these applications showed that theoretical security tech-
niques (such as oblivious RAM) that had been deemed too impractical to ever
find real-world use, could indeed find real-world use. What other theoretical

Application Case Studies 171

techniques can we mine? For example, theoretical PIR algorithms exist which,
at first glance, seem to require too many parties or too much work by the client—
but which might become quite feasible if we insert a TCP as a proxy in the right
place.

On another level, the development of this idea of oblivious circuits—and
these security-relevant applications of dusty old ideas such as Beneš networks
and merge networks—suggests that a richer application space may lie here.
The usefulness of oblivious circuits also suggests the potential for developing
a TCP customized just for this purpose:

limiting the memory and CPU, to save cost (and since our work showed that
we might not need that much memory anyway)

but increasing the ability to quickly bring data in and out across the secure
boundary, through a symmetric crypto engine that also checks for integrity,
and perhaps for some other formatting flags.

9.7 Further Reading
The litany of WebALPS applications in Section 9.2.2 was based on Section 3

in my SIGEcom paper [Smi01]. Shan Jiang’s thesis [Jia01] and our conference
paper [JSM01] provide more discussion about the design and prototype. Eric
Rescorla’s book [Res00] is an excellent reference for SSL.

More details on the Armored Data Vault work appear in our PET2002
paper [IS03b]. Section 9.4 cites the principal TCP-based private server ap-
proaches: Asnonov’s [AF03, Asn04] and ours [SS01, IS03a, IS04b]. Our
IEEE Security and Privacy paper surveys both the armored vault and the pri-
vacy server work [IS04a].

This book has focused on trustworthy computing platforms. What does it
mean for stakeholders to be able to trust a computing device to carry out its
correct computation, despite direct adversarial attack? How can we go about
building such a device? If we had one, what could we do with it?

This book has also emphasized real experience. We do not want to just
reason about what might be possible; we want to try to make this real, in the
real world. This drive motivated the development of the 4758 platform (Chap-
ter 5, Chapter 6, Chapter 7), establishing assurance (Chapter 8) and exploring
applications (Chapter 9).

This experience left us with several observations:

A TCP can indeed enabl epractical solutions to distributed security problems.

We prototyped many of these with the IBM 4758 platform. However, in
theory, any platform providing the basic core functionality of a TCP should
be able to support these applications.

The limited-power, special-purpose programming environment of the 4758
hindered its usefulness. Programming and debugging this embedded sys-
tem via the “soda straw” the CP/Q++ developer’s kit offered is awkward.
Porting existing software to an OS that does not provide standard syscalls is
awkward. Even with the Linux, the limited internal code-space hampered
development of our S/MIME gateway prototypes.

The relatively high cost of a 4758 (e.g., a Model 2 device retailed for about
US$3K, in quantities of one) and relatively large size (e.g., this PCI card.
will never fit in a laptop or PDA) will keep it from ever being ubiquitous.

Chapter 10

TCPA/TCG

174 TRUSTED COMPUTING PLATFORMS

However, recent years have brought the gradual emergence of another family
of device that can potentially be the foundation of another family of TCPs that
address these concerns, at the cost of a lower threshold of security.

In 1999, the Trusted Computing Platform Alliance (TCPA), a consortium of
many leading hardware and software vendors, formed and began considering
the problem of how to increase the level of security on commodity desktop and
laptop machines, without significantly affecting the cost. They developed an
architecture based on a Trusted Platform Module (TPM), currently existing as
a small chip added to the motherboard that assists in witnessing and perhaps
controlling the boot process (in the spirit of the early work by Yee, Arbaugh, and
others Section 4.3), binding secrets to machine configuration and attesting about
this configuration to other parties (in the spirit of our outbound authentication
work Chapter 7). In 2003, the Trusted Computing Group (TCG) took up the
mission. However, in the popular lingo, the term “TCPA”—the old name of the
organization—persists as the name for the design and vision.

The TCPA/TCG approach is exciting because it’s real and because (for the
most part) it’s open. TPMs exist; many commodity machines ship with them
already installed; the organization has published the specifications for both the
TPM as well as the TCG Software Stack (TSS) to be supported by the TPM. On
the other hand, the TCPA/TCG approach is challenging partly because of the
large number of players involved, and because of its potential role in a large
family of emerging products. A tempting hypothesis is that the multiplicity
of authors—and the lack of one driving clear vision—makes the specifications
hard to read and digest. Another tempting hypothesis is that the TCPA/TCG
design supports a product vision that has not been fully articulated yet publicly
(nor, perhaps, privately), and the pieces do not quite hold together for those of
us outside lacking that keystone. As another artifact of this industrial reality, the
TCPA/TCG vision has been a moving target. The TPM has gone through sev-
eral specifications. The currently available hardware does not match the latest
specification (and, sometimes, it does not quite match its own specification).

Nonetheless, the TCPA/TCG approach—put a small, cheap chip on the moth-
erboard and use it to secure a commodity desktop—targets a different point in
our TCP solution space. This chapter presents a summary snapshot of the
TCPA/TCG approach; Chapter 11 will discuss our experiments in trying to
turn current TCPA/TCG hardware into a “virtual” 4758 and use this TCP for
applications.

Section 10.1 discusses the basic structure of the TCPA/TCG architecture.
Section 10.2 discusses how we can use the attestation features of TCPA/TCG to
provide outbound authentication functionality. Section 10.3 discusses the phys-
ical security profile of this architecture. Section 10.5 gives some background
on starting experimentation. Section 10.6 discusses some of the interesting
changes promised in the new 1.2 spec.

TCPA/TCG 175

Caveat. It is important to note that, by definition, the material in this chapter
will be obsolete. As noted above, the TCPA/TCG design is a continually moving
target. The interested reader is urged to consult the Trusted Computing Group
for the latest specifications and thinking.

10.1 Basic Structure
We’ll start by reviewing the TCPA/TCG hardware design, based on the 1.1 b

hardware specification [Tru02] for the PC platform [Tru01]—since this has
been what’s been available for experimentation. To increase clarity for this
discussion, we’ll avoid the generality a specification can introduce, and instead
take a practical systems perspective: this is what you see, if (like us) you buy
a TPM-equipped PC and start playing.

The Trusted Platform Module. As we have noted, the heart of the TCPA/TCG
design is the trusted platform module. In current instantiations, the TPM is a
smart-card-like chip that lives on the motherboard of a general-purpose desktop
machine. As with our hardware lock microcontroller in the IBM 4758, this ar-
chitecture assumes that the TPM knows when the system is rebooted. The TPM
(at least the ones we have been working with) possesses the ability to perform
SHA-1 hashing and some (slow) RSA operations; it also has a hardware-based
RNG.

Like a 4758 layer, the TPM goes through a process through which it receives
ownership. The owner possesses exclusive privilege to request certain TPM
operations; the owner authenticates these requests by using a secret 20-byte
key to generate a keyed MAC value on them. (The TPM uses HMAC based on
SHA-1). This process also results in the creation of a storage root key (SRK)
for the TPM.

Once owned, the TPM’s primary functionality centers on its ability to witness
platform configuration and to provide protected storage of keys and data.

As with 4758 layers, the TPM “owner” is the party in charge of administrating
the security of that TPM—and in particular is not necessarily the user of the
machine.

Platform Configuration. The TPM’s vehicle for witnessing platform config-
uration is a suite of platform configuration registers (PCRs). Each PCR is 20
bytes long, the length of a SHA-1 hash value. At boot time, the TPM resets
the PCRs to zeros. After that, the main CPU can then “write” new values to
the PCRs. However, rather than replacing the current value, a “write” of a new
value extends the old value. That is: suppose the PCR in question currently con-
tains value and the CPU wants to update it with The TPM concatenates

with calculates the SHA-1 hash of that concatenation, and stores in
the PCR. This new PCR value thus embodies then modified by but in

176 TRUSTED COMPUTING PLATFORMS

a way that (should the intractability assumptions underlying hash functions be
correct) the adversary would not be able to calculate a that would take him
a desired

This hash-and-extend operation thus greatly generalizes the ratchet lock
mechanism in the 4758. Not only can the CPU advance a PCR in a way that
cannot be reversed; the CPU can also advance it in different ways, depending
on the used, and the CPU has a choice of PCRs with which to work. Because
this latter feature, the PCR suite can represent not just the current state of the
system within some execution progression; it can also represent choices in the
path to that point. For example, in the 4758 ratchet lock, the CPU advances
the ratchet from 0 to 1 before moving from the ROM phase of Miniboot to
the FLASH phase, and from 1 to 2 before advancing to the OS. With a PCR
approach, the CPU could also update a PCR twice: but the updates could now
also reflect the identity of the next block of code, as represented by its hash.

In the TCPA/TCG approach, the platform uses the PCR suite to record the
execution sequence and the software and potentially hardware involved.

The platform does this inductively. Initially, the BIOS reports its hash to
the TPM—thus the TPM’s PCR suite reflects the configuration of this system,
running BIOS. The BIOS sends the next block of code to the TPM, to hash
and then incorporate into the PCRs—thus the TPM’s PCR suite now reflects
that subsequent configuration, unless the first one was corrupt. The process
continues. If the BIOS is adversarial, it can thus subvert this entire process.
Hence, in TCPA/TCG lingo, the BIOS is the root of trust for measurement
(RTM).

The basic specifications leave the designer some latitude in deciding what to
measure and how to incorporate these measurements in the PCR suite. Further-
more, as noted above, the PCR suite can also include hardware measurements;
we noticed this empirically when we changed a memory card in our test machine
and saw the PCR values change.

The platform can thus use the PCR value to speak about its configuration. In
TCPA/TCG lingo, the platform supports authenticated boot when it can prove
to a third party what software booted; the platform supports that apparently
synonymous secure boot when the TPM ensures that the system does not boot
unless the correct PCR suite results. (We were not able to determine how the
TPM in our machine might do this.)

Protected Storage. Using these PCRs, the TPM provides the designer with a
way to bind stored data to the platform only when it is in a specific configuration.
At a high level, one can think of this a general sealing and unsealing service.
The platform can seal data by listing which PCRs are of interest and providing
an additional 20-byte authorization code. The TPM responds with an encrypted
item. To decrypt this item, the platform needs to present it to the TPM—except

TCPA/TCG 177

the designated PCRs must have the same values they had when the data was
sealed, and the caller must know the authorization code. (At a lower level, the
TPM provides this service via an internal key hierarchy rooted in the SRK; it
can be easy for a reader to get lost in the command set that deals with these
keys.)

Since the TPM has the ability to do RSA operations, it only makes sense to
share that with the main platform. Some services of interest include:

The TPM can create a key pair and seal it to a given configuration, as one
operation.

If the TPM knows a protected item is a private key, it can do a private key
operation with it instead of revealing it, when the caller is authorized (that
is, when the PCRs are correct and the caller knows the authorization code).

If the caller is authorized, the TPM can use a protected private key to sign
a statement attesting to the current PCR values.

If the caller is authorized, the TPM can use a protected private key signing
a certificate about the public part of a TPM key pair—including the PCR
policy for its private part.

Credentials. The platform can use its TPM to build up a PCR suite that re-
flects its current configuration, and can bind keys and seal data items to such
representations of this configuration.

However, to convince a remote relying party, the platform needs to somehow
bind these signed assertions and hash values to something the remote relying
party trusts. The TCPA/TCG architecture achieves this through a set of creden-
tials.

The TPM leaves the factory with an endorsement key pair whose private
key (one hopes) is uniquely known by that TPM.

The endorsement credential (typically from the TPM manufacturer) is a
signed statement by some trustworthy entity that binds the endorsement
public key to that type of TPM.

The conformance credential states that the TPM and its platform conforms
to the specification (and can be “issued by anyone with sufficient credibility”
to do this evaluation [Tru04]).

The platform credential (typically from the platform manufacturer) contains
references to the endorsement credential and the conformance credential,
some general statements about the platform type.

178 TRUSTED COMPUTING PLATFORMS

An identity credential is a signed statement from what the TCPA/TCG spec
calls the Privacy CA that binds data about the TPM to a special identity
public key. (We’ll discuss this shortly.)

Although the credential set appears complex, a view of the industrial pro-
cess (and the backlash Intel faced for earlier trying to include machine-readable
serial numbers in its CPUs) might appear to simplify things. First, one might
want to separate the TPM manufacturing and blessing process from the ma-
chine manufacturing process, hence the separation of endorsement credential
from platform credential. Second, one might want to separate the end appli-
cation use from these manufacturers, in order to preserve the privacy of the
deployer and the users; hence the separation of the platform credential from the
identity credential, and the use of the term “Privacy” in “Privacy CA.” (In our
experimental work, we used the alternate term Yet Another CA —YACA.)

Although the specification and documentation discuss this large suite, the
only thing that the TPM in the machines we experimented with appeared to
come with was the endorsement key pair. From our reading and testing, it
appears that the TPM will only use the endorsement private key for decryption
(not digital signatures), and only in the context of the TPM_TakeOwnership
and TPM_ActivateIdentity commands.

10.2 Outbound Authentication
As we observed back in Chapter 7, perhaps the simplest way for a TCP

application entity to prove that it is “the real thing doing the right thing” is to
wield a private key that exclusively belongs to it (thanks to the platform security
architecture) and whose public key a relying party believes belongs to it (thanks
to some trusted CA, and perhaps the platform security architecture as well).

In the TCPA/TCG architecture, identity key pairs play this role. The TPM
Owner establishes such a key pair and its binding through a multi-step process.

First, the TPM_MakeIdentity command causes the TPM to generate a new
key pair and an identity binding for it. The identity binding contains:

the newly generated public key;

a name for this entity, chosen by the caller; and

the public key of the CA that will certify this identity.

All of this is signed by the new private key.
The TPM Owner then packs this data along with the credentials and ships it

off the CA. The CA inspects everything to see if it all makes sense. However,
at this point, the CA cannot really conclude that the claimed key pair belongs
to the platform that the credentials describe with the name the owner claimed.
It might—but then again, maybe this is all a clever fraud.

TCPA/TCG 179

Consequently, the CA hedges its bets. It signs an attestation credential tes-
tifying to this new identity. However, the CA encrypts this credential with a
random symmetric key, and then encrypts this symmetric key with the endorse-
ment public key of the TPM allegedly involved. (Remember, the endorsement
credential provided a signed assertion from the TPM god saying that a genuine
TPM had this public key.)

At this point, a signed certificate exists for this entity—an “identity” allegedly
living on a particular platform with a particular TPM. However, only that TPM
is in a position decrypt the symmetric key that encrypts this certificate and
release it to the outside world. The TPM Owner handles this action with the
TPM_ActivateIdentity command.

At this point, the platform can ask the TPM to use the identity key to sign
special types of assertions. (The TPM will not use it to sign arbitrary data.)

We can use this to reproduce the outbound authentication functionality of
the 4758 TCP: an “OA Manager” obtains this key pair, then (upon request of
other modules) creates new TPM-held key pairs, wrapped to PCR value suites
reflecting the calling module on this platform, and uses the identity private key
to certify (via TPM_CertifyKey) these new public keys and their bindings.

10.3 Physical Attacks
Clearly, as a single chip sitting on a motherboard within a standard unpro-

tected commodity machine, the currently available TPMs do not provide the
same level of protection against an adversary that higher-end TCP predecessors
do.

Several avenues of attack immediately suggest themselves.

With the possible exception of TPM-held private keys, computation is still
occurring outside the physical boundary of the TPM. Tools such as logic
analyzers can still reveal secrets.

The TPM suffers from a classic TOCTOU risk: what if the code changes
between the time the TPM records the hash of a block of code in a PCR, and
the time that code uses its TPM privileges? Malicious DMA and dual-ported
RAM both might be effective attack tools here.

A Chapter 3 discussed, trusted hardware modules—particular single-chip
devices—have a long history of susceptibility to side-channel and induced-
fault attacks. How resilient is any given TPM?

On the other hand, one gets what one pays for. Rather than asserting that
TCPA/TCG provides no protection against hardware attacks (as some col-
leagues have claimed), I would rather think of this design as just a different
tradeoff in the cost versus power versus security space. The barrier is higher

180 TRUSTED COMPUTING PLATFORMS

than with a standard machine, Furthermore, the potential exists that a future-
generation TPM, perhaps in conspiracy with security-enhanced CPUs (Chap-
ter 12), might raise the bar even further.

10.4 Applications
It is tempting to believe that the TCPA/TCG architecture was conceived

specifically to combat software and music piracy: operating system installa-
tions and media applications can set themselves up with TPM-protected and
TPM-certified key pairs, and then use these to carry out the sorts of protected
exchanges of software and data files envisioned several decades ago (Chap-
ter 4). Indeed, as Chapter 2 reviewed, many in the field oppose this technology
explicitly because of the vision of a dark future where consumers and end users
have little control over their information vehicles.

Alternatively, rather than being cynical, one could also be visionary, and
speculate on the similarities of a TCPA/TCG platform to the earlier high-end
platforms. Could we turn a TCPA/TCG desktop into a cheap, powerful, ubiq-
uitous (and insecure) 4758, and proceed to build applications like those in
Chapter 9? Chapter 11 will consider this vein.

Meanwhile, TCPA/TCG architects have been suggesting applications of their
own. For one example, an enterprise may require a client to attest to its software
configuration before letting it join the enterprise network, in order to prevent
unpatched and potentially infected machines from compromising network se-
curity.

Chapter 2 in [Pea03] provides a broader survey.

10.5 Experimentation
As the beginning of this chapter noted, a large appeal of the TCPA/TCG

architecture—even the 1.1 b TPM, with no official OS support nor applications
yet—is that it exists in commodity hardware, and one can experiment with it.

A would-be experimenter needs to determine whether a particular platform
actually holds a TPM, and to which specification it adheres. IBM released
an open-source Linux driver for the TPM [IBM], which we used. In our lab,
student Rich MacDonald started with the specifications and began producing an
open-source library to enable platform code to format TPM calls and process
responses. Two years later, just as he was finishing, IBM released an open-
source library [SKv03].

Some obstacles we faced included the platform originally shipped with the
wrong BIOS for the TPM; the TPM’s endianness does not match the x86;
mistakes in command preparation triggered rather unhelpful error codes; and
some of the TPM commands generated “call not implemented” errors.

TCPA/TCG 181

10.6 TPM 1.2 Changes
As noted, the TCPA/TPM architecture is a moving target. As of this writ-

ing, the 1.2 specifications for the TPM have been published [Tru03a, Tru03b,
Tru03c], although TPMs compliant with this new specification have not been
available for experimentation.

The new specification offers several new features that could prove interesting
for building TCP architectures. We quickly review some.

Locality. One of the difficulties in the 1.1b design (and also in the 4758’s
ratchet locks) is the inability to switch back and forth between two trust contexts.
If we advance the ratchet or extend a PCR to put away context A’s secrets when
we switch to context B , we cannot go back to A later. The 1.2 specification
includes a notion of locality that (apparently with some hardware support) would
permit the CPU to have the TPM switch back and forth between contexts. The
new specification also includes a TPM_PCR_Reset command, which requires
special locality privilege; however, apparently only some the PCRs may be
reset.

Monotonic Counters. Another difficulty we had with building on the 1.1b
design was defending against various types of replay attacks, and ensuring that
our system’s trusted core can know that state is advancing, and certain data or
assertions may be stale. The new specification includes monotonic counters
that might be useful here. (Interestingly, we also included monotonic counters
in the 4758—but that was because application constraints forced us to expose
control of the real-time clock to possibly adversarial Layer 3 code.)

Delegation. Another difficulty we had building on the 1.1b design was the
fact that we sometimes wanted several different entities requesting commands
restricted to the TPM Owner; this would appear to require sharing the TPM
Owner’s 20-byte HMAC key. The 1.2 specification includes a detailed delega-
tion model that might help with this problem.

10.7 Further Reading
[Fel03, Sch02] provides short, balanced overviews of the TCPA/TCG ar-

chitecture. The Hewlett-Packard book [Pea03] provides a longer discussion.
The specifications are more definitive, but not quite as readable. (One stu-
dent commented that the specification says “End of Informative Comment” but
nonetheless goes on for hundreds of pages. The recent “Architecture Overview”
document [Tru04] appears to be much-needed.)

The preliminary technical report [MSWM03] on our experimentation also
provides a narrative about TCPA; Section 10.1 and Section 10.2 above were
loosely based on Section 3 in that report.

Chapter 11

EXPERIMENTING WITH TCPA/TCG

Their potential to solve real security problems in the real world drove much
of the research and commercial development in trusted computing platforms.
Chapter 9 discussed our attempts to use a high-end TCP for some of these
applications. That chapter concluded by observing that the limitations of a
small, expensive device hindered application development and deployment.
Chapter 10 then gave an overview of the TCPA/TCG architecture, and its inex-
pensive TPM hardware that is commercially available and can potentially turn
an entire commodity machine into a TCP (albeit of lesser physical security).

The questions naturally arise: how real is this potential? Can we use this
hardware to build a generic TCP, and build applications that the limitations of
a 4758 made impractical? This chapter will discuss my group’s experiments to
do just that: using the commercially ubiquitous 1.1b TPM [Tru02, Tru01] to
secure a larger Linux desktop.

First, we consider the general challenges: Section 11.1 frames the problem,
and Section 11.2 considers the lifetime mismatch that arises when we try
use TCPs for complex applications.

Then, we discuss the platform we built: Section 11.3 presents the architec-
ture we developed, and Section 11.4 presents our implementation experi-
ence.

Finally, we discuss applications we built on these platforms: Section 11.5
reconsiders the hardened Apache application of Section 9.2, Section 11.6
discusses using this platform to harden OpenCA, and Section 11.7 discusses
using it to balance DRM needs with user privacy needs.

184 TRUSTED COMPUTING PLATFORMS

11.1 Desired Properties
First, we need to consider what properties we want from our desktop TCP.

Computational Power. We want the convenience of being able to run an OS
sufficiently similar to common commodity systems to enable easy adoption of
legacy software and applications.

Trustworthy Computing Environment. The platform needs to be as trust-
worthy as possible, within the basic limits that the machine is still susceptible
to “logic analyzer” attacks (Section 10.3).

Outbound Authentication. An application entity running on our desktop
TCP needs to be able to prove it’s “the real thing, doing the right thing.”

As we have discussed in Chapter 7, it is probably cleanest if an application
entity can do this by possessing exclusive use of a private key, whose public
key is supported by some certificate chain that establishes the platform and
configuration parameters necessary to convince the relying party to trust the
entity for this application.

Secure Storage. The desktop platform also needs to be able to store non-
volatile data, and either zeroize it or otherwise render it unavailable to the
adversary upon attack. (Of course, we can only expect the platform to handle
attacks within the threat model in a TPM architecture.)

Deployment. As with the 4758, we want to enable guerilla-style development
and deployment of applications. That is, we do not want to require the hardware
vendors and major software vendors to be committed to major involvement in
any given application.

Supporting experimentation and development was one of the reasons we
chose open source, and decided not to wait for the TSS stack to be released—
particularly since the specification itself had not been made public when we
started. Too much debate focused on the negative potential of this technol-
ogy (e.g., Section 2.6), even though TCPs had a considerable positive potential
(Chapter 2, Chapter 9). We hoped to enable experimentation to supplant ide-
alogical debate (and also appreciated the potential irony of open source use of
TCPA/TCG hardware to take root before commercial closed-source systems
catch up).

11.2 The Lifetime Mismatch
Relying parties like to make trust judgments about entities that know the

private key matching a public key with some type of trust chain supporting it.
To simplify the process for the relying party, this trust chain often reduces to a

Experimenting with TCPA/TCG 185

certificate from some CA the client has chosen to trust for this purpose. Because
of its importance, this certification is not a lightweight process. Consider an
SSL-protected Web server: to certify the public key, the sysadmin must go
through a lengthy process with a commercial CA, and then find someone with
room in their budget for the CA’s fee.

Our general TCP model adopts this scheme: an application somehow ends
up with such a private key, and the TCP architecture confines that private key
to that application. However, we want to harness an entire desktop machine for
our TCP, and we want to provide something close to a standard programming
environment for its applications. The intended consequence of such an envi-
ronment is to make it easier to end up with standard programming: large appli-
cations and code libraries, maybe even a large operating system. As enterprise
security officers and conscientious sysadmins know all too well, a seemingly
inevitable property of our current complex software environments is an endless
stream of vulnerabilities. For an administrator of an application on a TCP that
permits such complex software, the responsible action is to vigilantly monitor
announcements and apply patches, if this application entity is to be trustworthy.

The action necessary to maintain a trustworthy environment conflicts with the
way the TCPA/TCG platform confines secret data to application entities —via
hashes of the software itself. Consider again the SSL Web server example. A
responsible server installation may go through multiple upgrades of the software
stack in a year, but keep the same key pair for many years. How do we move
from secrets bound to short-lived software configurations to a private key bound
to some long-lived “trustworthy” entity? How does the relying party draw this
conclusion from the certification attached to the long-lived key? How does
the CA, when it certifies the key, trust that the sysadmin will continue to be
conscientious? When a once-trusted system configuration becomes untrusted,
due to a vulnerability announcement and patch, how does the TCP prevent this
insecure version from retaining the key— or a malicious operator from rolling
back a patched configuration to the vulnerable one, in order to exploit the
vulnerability?

Besides the basic code base, we also need to worry about the dynamic nature
of other data and parameters that the application depends on. Consider the SSL
Web server again—even if the TCP protects the Apache and SSL code, what
about the pages and CGI scripts that the server offers?

11.3 Architecture
Our architecture thus needs to build on the 1.1 b TPM to provide three things:

a trustworthy environment, based on a reasonably full, reasonably standard
OS;

186 TRUSTED COMPUTING PLATFORMS

a way to bridge the above mismatch between entity lifetime and configura-
tion lifetime; and

a way to provide secure storage, bound to the entity (not the specific con-
figuration).figuration)

Trustworthy Environment. We begin by considering the trustworthy envi-
ronment. As noted earlier, we started with Linux, as perhaps the most dominant
open-source OS; the dominance means applications and software exists, and the
open-source status means that we can get easily dive in and modify internals.

To ensure the system with a complex software configuration remains in a safe
state, we drew on previous work in kernel integrity (e.g.,
an Enforcer module checks every file and directory against what we call a
configuration file: a signed table of hashes. To try to minimize the performance
hit, we perform these checks when a file is first opened, by hooking inode
permissions checks. To ensure the Enforcer itself runs correctly, we use the
TPM PCRs to record the execution sequence up to and including the Enforcer
and the kernel code it depends on, and we build the Enforcer into the kernel
itself, within the Linux Security Module (LSM) reference monitor framework.
(This LSM framework also allows us to extend the Enforcer to hook and perform
checks on other system calls as well.) To ensure that Linux boots securely, we
compile it into the kernel (rather than using loadable modules); as Section 11.4
below discusses, we also need to make sure that the adversary cannot subvert
the process by changing boot parameters.

We named this Linux-based TPM platform Bear; the overall project came to
be known as Bear/Enforcer.

Entity Mismatch. To address the lifetime mismatch, we use the TPM PCR
suite to protect the stable core: the kernel and the Enforcer module. The
Enforcer verifies the authenticity of the configuration file via a digital signature.
A Security Admin—who may very well be a remote third party, such as Thawte
or one of the other commercial CAs—owns the private key, and produces these
signed configurations of what it deems to be a secure configuration. For now,
we hash the public key into a PCR value, as part of this stable core.

The CA that signs this platform’s public key is testifying both to this platform
and long-lived core, as well as to the continuing good judgment of the Security
Admin.

We plan also to incorporate a low-water mark. Each signed configuration file
would include a current serial number, as well as a new low-water mark. After
verifying the signature, the Enforcer replaces its TPM’s current low-water mark
with the pairwise maximum of that value and the one in the file, and then only
accepts the file if its serial number not less than that minimum. Our intention
was to allow a sysadmin to roll back a new update when appropriate (e.g., due

Experimenting with TCPA/TCG 187

to incompatibility of the update with needed functionality), but still to enable
the Security Admin to establish a minimum baseline. It would be interesting
to explore using additional techniques (e.g., perhaps based on the monotonic
counters in the 1.2 specification) to make this revocation of old configurations
more automatic. In some sense, this approach is just a generalization of the
“epoch” entity approach we developed in the 4758 (Chapter 7), just as the TPM
PCR approach generalizes the “configuration” entity approach (Section 10.1).

Implementing our low-water mark approach will require solving the problem
of TPM-controlled non-volatile storage. In 1.1b, we explored the use of the
Data Integrity Registers, which had murky functionality which have since been
deprecated.

Secure Storage. The platform also needs to provide secure storage to its on-
board applications, in a way that is easy for the application programmer to
exploit. In modern operating systems, the standard paradigm for non-volatile
storage is the filesystem. The tool of a loopback filesystem lets us provide
a filesystem to the application programmer, while appearing as a file to the
machine’s OS; an encrypted loopback filesystem keeps this file encrypted. To
provide secure storage, we used an encrypted loopback filesystem. The TPM
protects the symmetric key that encrypts the loopback. (In our prototype, we
used AES.) The Enforcer only releases this key if the configuration checks are
successful. (We are exploring various ways of ensuring the freshness of this
encrypted file.)

Putting it All Together. To put it all together, we looked at the components
of the platform and partitioned them by lifetime.

Long-lived data. The initial BIOS ROM (the root of trust management)
reports itself to the TPM. The TPM then inductively measures the rest of
the boot sequence up to and including the Enforcer.

Medium-lived data. The Enforcer measures the public key of the Security
Admin by hashing it into a PCR. The Enforcer then checks the rest of the rest
of the security-critical software against the configuration file. If things are
OK, the current PCR suite enables release (or TPM use) of the application’s
private key and other secrets; if things are not OK, the Enforcer advances the
hash and (if we had released the application secrets into the system memory)
zeroizes secrets.

Short-lived data. If the PCR values are correct, the TPM will release the
symmetric key for the encrypted loopback filesystem. The Enforcer mounts
the filesystem and makes it available for use by the application. The OS
may allow the application and other users to read and modify data in the

188 TRUSTED COMPUTING PLATFORMS

Figure 11.1. Sketch of the flow of protection and trust in our platform. To enable a client to make
a trust decision about dynamic content based on a long-lived application key pair, we introduce
indirection between the core long-lived components and the more dynamic components. Our
intention is, like the IBM4758, the TPM/Linux platform would let the end user (here, the server
operator) to buy the hardware and install the software; our platform could authenticate these
components to “Yet Another CA.” Here the dashed lines represent interactions between the
platform and external parties.

encrypted loopback filesystem; however, the Enforcer has checked these
item.

To provide outbound authentication, we can follow the process that Sec-
tion 10.2 outlined: we set up a TPM identity key pair wrapped to the long-lived
core, have an external CA sign a certificate testify to this, and build from there.

Figure 11.1 sketches the overall structure.
In our latest experimental version, we also allow the configuration to specify

that “only application X can access file Y ” (e.g., the “poor man’s compart-
ment”).

Experimenting with TCPA/TCG 189

11.4 Implementation Experience
We built the Enforcer as an LSM for the 2.6 kernel (or a 2.4 kernel with the

LSM 2.4.20-1 kernel patch). The initial prototype is about 2000 lines of code.
As noted above, for secure deployment, the Enforcer should be compiled into
the kernel; however, we also included hooks to load it is a separate module, in
order to simplify development and testing.

As Section 10.1 discusses, at boot time, the BIOS reports itself and the master
boot record (MBR) to the TPM, and then passes control to the MBR.

We started with the LILO loader. We modified the first-stage bootloader
first.b (the MBR in LILO) to hash second.b. Doing this in assembly,
to fit within the tight confines of the MBR and handle the TPM Endianness
requirements, was tricky. In our current prototype, we run our TCPA-enabled
LILO from a floppy. This decision stemmed in part from codespace—and also
because of problems with IBM’s “Memory Present Driver,” which we used to
communicate with the TPM via real-mode assembly. An MBR is 512 bytes;
but a hard disk MBR also contains other data (the disk partition table or tables),
and does not give us the full 512 bytes for code. This would not have been a
problem, except the TPM in our machine did not appear to actually support the
TCPA_HashLogExtendEvent call; we kept getting a “call not implemented”
error. The workaround—replacing this call with a sequence of calls—pushed
us over the limit for the hard disk MBR. (The floppy gives us the full 512 bytes.)

We modified second.b to passing the memory where the kernel resides to
the TPM, so that the TPM hashes the contents of that memory into a PCR. This
hash will cover any persistent data the loader uses (i.e., all of the information in
/etc/lilo. conf). The LILO program (that is, /sbin/lilo) reads the data in
the configuration file and merges the data with the actual loader (first.b and
second.b)—because no filesystem exists at the time the loader is booting the
system so the necessary information is put into the data segment of the loader
program itself.

If the adversary wants maliciously change the boot process by changing
lilo. conf, then /sbin/lilo must be run to make those changes take effect,
and the system must be rebooted. However, if all this happens, the PCR which
holds the kernel’s hash will hold a different hash value than the previous boot.

The adversary could also try to pass malicious arguments to the loader via
the command line at the boot prompt, but second.b can include these argu-
ments in the kernel hash, and thus embed them in the TPM’s perception of the
platform configuration. Alternatively, the adversary could try to change the
mapfile. However, our system calculates the hash of the kernel image once it
is in memory, so such an attack will place a different hash value in the PCR.
Again, our system will not allow the secret to leave the TPM.

The Enforcer uses the /etc/enforcer/ directory to store its signed con-
figuration file, public key, etc. Having the kernel store data in the filesystem is

190 TRUSTED COMPUTING PLATFORMS

a bit uncouth, but seemed the best solution for this problem—and also is not
completely unprecedented.

In addition the platform itself, we also wrote a number of small executables
which make some of the TCPA calls necessary for attestation (TPM_MakeIdentity
and TPM_ActivateIdentity). We also wrote some utilities to produce the se-
curity policies, and for each file covered by the policy, the Security Admin can
specify what should happen if its integrity check fails: log, deny, or panic.

We developed the Enforcer under user-mode Linux (UML), which worked
very nicely—each bug that appeared under UML also showed up with the real
system, and vice-versa. We ran basic functional tests, showing that modifying
the configuration file, public key, signature, or any protected file actually causes
the appropriate reaction. We also ran 36 hours of continuous stress-tests; the
code showed no signs of crashing or leaking memory.

Issues. At the time of this writing, several areas remain for future work in our
design and implementation. We might improve performance by clever caching
of validated hashes. We also need to examine more carefully how to use this
signed-configuration approach to handle components—such as logs—whose
contents will change during correct execution. Right now, the best solution
appears to be to put these into the short-lived loopback—and work on clever
ways to ensure freshness of the data in this loopback file.

The major limitation of our approach is that data elements that the Enforcer
does not watch cannot be checked for integrity. Currently, the Enforcer takes no
action if a malicious program accesses kernel memory or other critical resources
In the absence of TCPA/TCG support for guaranteeing memory integrity, we
are again forced to depend on the underlying OS to prevent such attacks.

Source Availability. The source code is available via GPL at enforcer.
sourceforge.net. Our initial release went out in August 2003, with contin-
ual updates since. We brag that our project was the first non-trivial TCPA/TCG
platform in the open world—but we brag cautiously, since (due to TCPA/TCG’s
intimate ties with product development, which tends to be held closely) one
never knows. A the time of this writing, our project has had over 1150 source
downloads, and still appears to the only open-source TCPA/TCG-based plat-
form in existence.

11.5 Application: Hardened Apache
The first application we considered for this platform was revisiting the We-

bALPS application of Section 9.2.
The initial trust problem here is that, on the Web, server-side SSL only

protects the tunnel between the client and the server; for sophisticated users,
it might also provide some authentication of the server identity. How can we

Experimenting with TCPA/TCG 191

extend the secure tunnel into the server and around the application it offers?
The solution approach was to move the SSL private key, management of the
session keys, and the application into a TCP-housed co-server.

However, the limitations of the 4758 TCP hindered our 4758-based proto-
type. The Apache/mod_ssl/OpenSSL suite is popular for Web servers in part
because it is free and it is relatively easy to set up and maintain. However, the
4758-based prototype required an expensive 4758 TCP. The implementation
required sufficient careful surgery of the Apache codebase that updating our
prototype for a new codebase was prohibitively hard. Moving a non-trivial
application inside the platform required even more surgery. The performance
was slow. Finally, had we managed to deploy this for a real Web site, we would
have immediately been confronted with the lifetime issue: how often does the
sysadmin go back to the SSL CA, and how can we help the SSL CA make less
risky trust judgments about the future good behavior of the sysadmin?

Now that we had a TCP free from these constraints, it seemed natural to try
the application again. We put the Apache suite in the medium-lived core, and
the Web content and the SSL private key in the encrypted loopback filesystem;
a symbolic link connected the pathname Apache likes to use for the key to its
location within the loopback filesystem.

Performance. To gauge the impact of this TCP-hardened server, we gathered
the static Web pages from the Dartmouth Athletics server (19K files, 664MB)
and a typical day’s access logs (20K URLs, 15% for files that did not exist),.
The machine driving the tests was a dual-Intel Xeon machine, at 2Ghz with
512MB memory, running Debian Linux 2.4.20; the hardened Apache ran an
IBM Netvista 8310 (Pentium 4, 2.00GHz, 128MB, Debian Linux kernel 2.6.0-
test7, no preempt), The two machines were on 100Mb Ethernet, connected to
the same switch.

When we built the configuration file for site, we modified 156 of the file
hashes, just to check that Enforcer was working,

Our system—an Apache SSL server with all of the content in an encrypted
loopback filesystem, using the TPM to protect the server’s private key, and
using the Enforcer for integrity— only had a 6.8% slowdown compared to a
standard Apache SSL installation.

11.6 Application: OpenCA
Another part of our lab has focused on practical work in deploying a PKI in

academic populations—and making it easier for other colleges and universities
to do the same. In order to mesh with the current PKI-enabled applications
(such as client-side SSL for Web authentication and authorization, EAP-TLS
for WLAN access, and S/MIME for signing and encryption on email), such
deployments must take the standard X.509 identity approach: each member

192 TRUSTED COMPUTING PLATFORMS

of the enterprise generates a key pair, a central enterprise CA signs a certifi-
cate binding the public key to that individual’s name, and all the applications
implicitly trust that the enterprise CA knew what it was doing.

Deploying PKI in the higher education community raises several challenges,
including:

In order for stakeholders to have some assurance that an enterprise’s CA
certificates are meaningful, the CA’s private key must be used only to sign
bona fide certificates. This requirement implies the CA platform had better
be trustworthy.

In order to interact with a University B in the traditional X.509 way, the
CA at University A must itself be certified by a CA that University B trusts.
Typically, this second CA will either be a higher-level CA, or the CA of
University B. If the latter, typically the two CAs cross-certify each other; a
bridge CA exists exclusively to enable interaction by cross-certifying with
other CAs.

However, if a higher-level CA or a bridge CA is going to certify Univer-
sity A’s CA, then this higher-level one needs assurance that University A
follows appropriate certificate policies and practices, and also maintains a
trustworthy platform for the CA. (Incidentally, our lab is currently setting
up the Higher Education Bridge CA (HEBCA), so we may have a chance to
try these ideas in practice.)

University IT departments typically underbudgeted, and so require a CA
platform that is inexpensive.

Like many enterprises, university IT departments typically are understaffed,
and so require a CA platform that can remain trustworthy even without a
dedicated specialist staff.

Using a TCPA/TCG-based TCP with the OpenCA software suite might ad-
dress these problems. We use Bear/Enforcer to make sure that only the properly
configured OpenCA platform can access the CA private key; as much as possi-
ble, we embody the practices and policies in the application installation itself,
and use the TCP’s outbound authentication feature to help increase the con-
fidence of the certifying CA. Being based on a commodity machine and free
software keeps the direct monetary cost low. Employing the physical protec-
tions of the TPM chip provides enhanced security. Finally, packaging this
software—the TCP code coupled with OpenCA—in an easy-to-install “CA-in-
a-box” would help keep manpower costs down.

As part of our lab’s broader effort to produce “PKI-in-a-box” tools, we have
been looking at a basic painless OpenCA tool. As part of his Master’s thesis
in hardening OpenCA, graduate student Josh Stabiner has integrated OpenCA
with the Bear/Enforcer TCP code; an open-source release is in preparation.

Experimenting with TCPA/TCG 193

11.7 Application: Compartmented Attestation

One of the most controversial aspects of turning a commodity machine into a
TCP is its potential ability to give powerful corporations undue control over and
access to consumer machines. In this vision, producers of a popular electronic
resource, such as music files, may wish to limit what they perceive as illicit use of
their intellectual property by ensuring that only consumer machines configured
in an appropriately safe way can use these files.

For example, producer A might trust that program P , when installed in a
properly configured system, might make it sufficiently difficult for an adver-
sarial customer to make and distribute illicit copies of the licensed MP3s that
A sells. Consequently, A might want a method to ensure that, before customer
B buys an MP3 from A , B ’s machine is safely configured with P , and that A
securely ships the MP3 to this program.

This scenario creates a conflict of interest. Given the permeable nature
of modern operating systems, it would appear that A would need to know
everything on B ’s machine, in order to be able to reasonably trust that the
music was going to program P in a way that an adversarial B could not subvert.
However, this knowledge violates B ’s privacy: even if B would like to engage
in this license-restricted transaction with A , she might not want to share with
A anything more than the fact she has P installed safely. She might very well
regard the other items on her machine as none of A’s business.

One way to overcome this problem is to build a TCP on B ’s machine with
an operating system that can establish isolated compartments with reasonable
assurance. B can set up P to run inside a compartment. The TCP’s outbound
authentication can convince A that it really is talking to an installation of P
that, within the threat model, cannot be subverted by a malicious B ; however,
B can have assurance that A is learning the contents of the P compartment, but
nothing else.

To implement this idea, we started with NSA’s Security-Enhanced Linux
(SELinux). In theory, one can configure SELinux installations to enforce fairly
strict security policies; in practice, the configuration process has considerable
complexity. Nevertheless, we set it up to run the XMMS music player in a pri-
vate compartment, and verified that even the root super-user cannot spy on its
memory. We then modified our Bear/Enforcer code to work with the SELinux
kernel, and to verify the security policy as well as the code suite. This task
required getting the two LSMs—SELinux and Enforcer—to mesh together.

Besides providing an example of privacy-enhanced DRM, integrating SELinux
with Bear/Enforcer also increases the trustworthiness of the platform, as SELinux
policy enforcement will block many malicious attacks that could be attempted
by code or users that still manage to get by the Enforcer’s integrity check.

194 TRUSTED COMPUTING PLATFORMS

Student Alex Barsamian started building a prototype of this idea as part of his
senior project. Graduate students Josh Stabiner and John Marchesini finished
the prototype; an open-source release is in preparation.

As Section 12.2.5 discusses, recent work in secure hypervisors and trusted
virtual machine monitors present yet another approach to compartmented at-
testation: expanding the “compartment” to be an entire virtual machine. The
Terra team built a prototype based on insecure hardware another
recent paper presents a paper design [SS03].

11.8 Further Reading
The basic Bear/Enforcer architecture was designed and developed with stu-

dents John Marchesini and Omen Wild, based on the TCPA experiments carried
out by student Rich MacDonald.

Our early technical reports [MSMW03, MSWM03] present the evolution
of the project; Section 11.4 above was based on these reports. Our 2004 AC-
SAC paper gives a presentation that focuses on the applications;
Figure 11.1 above is a revised version of Figure 2 from our ACSAC paper.

As noted, our code exists at enforcer. sourceforge. com.

Chapter 12

NEW HORIZONS

Put simply, trusted computing platforms attempt to use some degree of hard-
ware security to secure a broader platform and the distributed applications that
use it. We have seen two main thrusts:

secure coprocessors (trustworthy platforms protected by a physical security
boundary), and

trusted platform modules (smaller non-computational units that add trust-
worthiness to a platform that lies outside the physical security boundary).

(In this taxonomy, the areas of personal tokens and cryptographic accelerators
would probably fit as an offshoot of the former.)

This chapter considers several current efforts that explore alternate technolo-
gies and approaches. We’ll start by reviewing basic CPU privilege architecture
and by framing the family of new paradigms that is emerging (Section 12.1).
We’ll consider academic research work in hardware techniques (Section 12.2)
and in software and cryptographic techniques (Section 12.3). We’ll then con-
sider industrial efforts: both as currently available products (Section 12.4) and
emerging product architectures (Section 12.5). We’ll conclude in Section 12.6
by looking at the longer history of secure coprocessing in light of these new
architectures.

12.1 Privilege Architectures
The textbook example of a processor has two privilege levels:

a maximum privilege level, often called supervisor or kernel mode, and

a lesser privilege level, often called user mode.

196 TRUSTED COMPUTING PLATFORMS

Figure 12.1. The standard CPU model offers two modes of execution: a low-privilege mode for
user-level application code, and a higher-privilege mode for more sensitive operations, such as
traditional OS functionality. The hardware constrains the interaction between modes, in order
to help keep low-privilege code from accidentally or deliberately usurping higher privileges.

In this textbook example, the processor tracks the current privilege level via
explicit hardware state. The intention is that the hardware itself will only
carry out sensitive operations—such as working with the page tables controlling
process memory—when the CPU is in kernel mode. Effectively exploiting
these two privilege levels requires a way to move from low-privilege to high-
privilege without negating the whole reason for two levels (as would happen if
low-privilege code could simply ask to change to kernel mode). The processor
typically provides a trap mechanism for controlled entry points into kernel
mode: a trap instruction (and sometimes other hardware events) cause the CPU
to change to kernel mode—but only after suspending the low-level thread of
execution and moving instead to a separate and presumably more trustworthy
thread.

In the textbook example, system software structure typically exploits this
hardware base by mapping the OS to the supervisor level and the user-level
processes to user level (hence the names for these levels). A wonderful example
of hardware-based security, hardware restriction of sensitive operations can
provide greatly increased protection of critical system resources against buggy
and perhaps even malicious application code.

Figure 12.1 illustrates this architecture.
However, the above discussions focused on textbook examples. In reality,

things are somewhat more complicated. For instance, on the hardware level,
much of the computing world has standardized on the Intel x86 model, which has
four levels of privilege—Ring 0 (maximum) to Ring 3 (minimum). However,
one would be hard-pressed to find an example of a system that uses any levels
other than Ring 0 and Ring 3. On the software level, some operating systems
have operations that run at user level, and some permit user code at kernel level.
Furthermore, operating systems tend to be large pieces of code that, historically,
have numerous unintended ways for a malicious user to do far more than he or
she is supposed to.

New Horizons 197

Figure 12.2. Emerging processor privilege architectures add another axis: a separate “secure”
mode that provides increased protections against the adversary. Sensitive applications can be
housed inside this protected half; other helper code executing inside this protected half may
enhance overall system and application security through careful participation with the normal
mode execution. Designs use various techniques to increase security by restricting interaction
between the halves.

The New Paradigm. We will discuss many ongoing projects below, both in
industry and in academia, are exploring various ways of enhancing CPU struc-
ture in order to make it easier to build trusted computing platforms. Viewing at
a high level, we might characterize these enhancements as all variations of the
same basic privilege architecture: revising the basic structure of Figure 12.1
by adding another axis. Besides “kernel” or “user,” the CPU can also exe-
cute in “ordinary” mode or in “secure” mode. The exact terms differ among the
projects, as do the implementation approaches. In “ordinary” mode, the proces-
sor acts like an ordinary, legacy CPU; in “secure” mode, it executes with higher
assurances and stronger protections. To help ensure these protections hold, the
architectures include techniques to manage and limit the execution entry points
into the secure mode, and data movement into and out of this barrier.

Figure 12.2 illustrates this revised architecture.

12.2 Hardware Research
A secure coprocessor envelopes a multi-chip computing environment; a TPM

protects a separate computing environment. Many academic researchers have
explored alternative ways to add assurance to the CPU itself.

12.2.1 XOM
David Lie and his colleagues at Stanford proposed a CPU architecture based

on execute-only memory (XOM) A driving motivation behind XOM
was protecting against piracy and other adversarial manipulation of application
software. In the resulting model, the application program may trust the CPU but

198 TRUSTED COMPUTING PLATFORMS

not necessarily the OS. As in the encrypted storage model of Best and Kent and
later prototyping by Yee (Chapter 4), the XOM architecture encrypts programs.
Only the trusted processor possesses the necessary decryption key. Unlike the
early prototypes, however, in XOM, only the sensitive application receives such
protection. Hence, these encrypted compartments map to the “secure” mode in
the new privilege paradigm.

The XOM design examines the CPU modifications necessary to make this
idea work. The CPU possesses a private key; program ciphertext uses hybrid
encryption, so that the CPU may employ faster symmetric cryptography for the
bulk of its work. Cache lines and memory management include tagging, to bind
storage data to XOM compartment, and keyed MACs for replay protection and
integrity protection. These keyed MACs even depend on addresses, to protect
against relocation attacks. The instruction set includes new hooks to enter
and leave a protected XOM compartment, as well as to move data between a
protected XOM compartment and an unprotected environment, and between
the CPU and a XOM compartment’s compartmentalized storage.

Subsequent XOM work included carrying out model checking to deter-
mine whether an adversarial OS could cause the system to enter insecure
states [LMTH03], This work demonstrated a replay attack that the literature
had suggested, where an adversary could invalidate new data in the cache before
it had been flushed to memory. Subsequent work also included exploring how
to build an OS on top of this architecture [LTH03]—which required addressing
questions such as how an OS can manage compartmentalized user processes
without compromising them. As Lie and his colleagues worked through the
various details of process and memory management, they made several mod-
ifications to the XOM hardware architecture. They also simulated the XOM
CPU using SimOS [RBDH97] and built XOMOS by modifying IRIX 6.5 [SGI].
They benchmarked performance by running an MP3 player and OpenSSL.

To enable outbound authentication, Lie proposes using the program itself to
carry its own private key in its protected code.

12.2.2 MIT AEGIS
Srini Devadas’ group at MIT has also been active in enhancing the trust-

worthiness of CPUs. This work has resulted both in a new CPU architecture,
AEGIS as well as numerous results in related supporting tech-

nologies. (The coincidence of this “AEGIS” name with the name of Arbaugh’s
secure boot project—Chapter 4—is unfortunate.)

Like the 4758, AEGIS starts with the assumption that the CPU possesses
a secret the adversary cannot reach. Like XOM, AEGIS adds a new “secure”
mode of execution to the CPU. AEGIS then adds new instruction set hooks to
enter and exit this mode and to use this protected secret key. AEGIS looks at
the security of memory for protected execution at a much finer granularity than

New Horizons 199

XOM; the initial design used hardware-accelerated Merkle hash trees to protect
each access to each value, although additional techniques have been discussed.
Like XOM, AEGIS provides all-or-nothing sharing: memory is either confined
to a particular protected environment or not protected; unlike XOM, AEGIS
implements this by partitioning the address space, instead of adding new data
move instructions.

AEGIS includes two visions: when a trusted portion of the OS exists and
when none exists; functionality moves from OS to hardware in the latter.

The AEGIS team speculates on applications in DRM and in certified ex-
ecution: farming an application to a remote trusted computing platform that
uses outbound authentication to prove it is “the real thing, doing the right
thing.” (TCP outbound authentication in this context is sometimes called
tamper-evident execution.) The initial design was evaluated using simulation
based on SimpleScalar tools, but silicon prototypes based on the OpenRISC
core [Ope03, for example] are reportedly underway.

12.2.3 Cerium
Cerium is another trusted processor proposal from MIT [CM03]. Cerium

consciously borrows architecture ideas from the 4758 and Dyad to support certi-
fied execution within a hardened CPU. Like XOM and AEGIS, Cerium does this
by cryptographically protecting process address spaces. Cerium borrows the
Merkle tree approach from the AEGIS team (although the AEGIS
team has also examined other schemes as well). Unlike XOM and AEGIS,
Cerium uses software: it pins a trusted microkernel inside the CPU. Events that
require address space manipulation trap to this microkernel, which directs the
appropriate actions.

Cerium appears to have remained a paper design only.

12.2.4 Virtual Secure Coprocessing
Ruby Lee and her group at Princeton have also been looking at architec-

tural changes to the CPU to enhance trustworthiness (as well as to further
other security-related goals, such as faster cryptography). In contrast to the
secure coprocessing and TPM approaches, Ruby suggested the term virtual
secure coprocessing for approaches that build the necessary functionality into
the CPU itself. One preliminary result included a design to create a safe space
for cryptographic keys inside the device [ML02]. However, research efforts
continue [LIB04, for example].

12.2.5 Virtual Machine Monitors
We could also try putting the security “underneath” an image of the machine,

a well-studied idea in security for example] that is beginning to

200 TRUSTED COMPUTING PLATFORMS

undergo a renaissance [The03, for example]. (Recall also Kent’s foreshadowing
of this idea in Section 4.1.1.)

In the research world, Tal Garfinkel and colleagues at Stanford have recently
proposed Terra an architecture which uses a Trusted Virtual Ma-
chine Monitor to produce separate virtual machines: both “open boxes” that
act like ordinary open platforms, and “closed boxes” that provide some degree
of trustworthiness. (Here, the “closed boxes” correspond to the secure mode in
the new privilege paradigm.) The TVMM and underlying hardware would pro-
vide the security foundations and attestation hooks. Garfinkel and colleagues
provide a thorough examination of the system design issues, and they even built
a prototype on VMware GSX Server 2.0.1 with Debian GNU/Linux (although
they note that this platform, not of “suitably high assurance,” is for experimen-
tation only). They have used this platform to build a “cheat-resistant” version
of Quake. The Terra paper provides a lot of discussion relating that project both
to previous trusted computing platform research (e.g., Chapter 4 and Chapter 7)
as well as to emerging research (e.g., this chapter, Chapter 12).

In a similar vein, Leendert van Doorn at Watson has been leading a secure
hypervisor research project, exploring using hardware support for machine vir-
tualization, glued onto the TCPA/TCG architecture [Shy].

The reader should note that a subset of the security research community have
very specific definitions for “virtualization”—and the VMware on x86 may not
always qualify. [RI00] presents a good discussion of these issues.

Rumors exist that major industrial players may incorporate support for vir-
tualization in future CPU hardware.

12.2.6 Others
XOM, AEGIS, Cerium, virtual secure coprocessing, and TVMMs all fall

squarely in the space of research to directly transform a CPU into a TCP. How-
ever, much other exciting emerging research looks at other aspects of hardware-
based security enhancements. We quickly review some.

Physical Unknown Functions. TCPs typically depend on hiding secrets from
the adversary. As Chapter 3 discussed, the problem of hiding a secret in
hardware—particularly low-cost chips—can be difficult. The AEGIS group
at MIT has some intriguing results in using the random delays in circuit el-
ements as a secret that (perhaps) can neither be reproduced nor “measured”
except by direct execution of an untampered circuit [GCvD02].

Physical One-Way Functions. Another group at MIT has explored using
epoxy with tiny glass spheres to build devices that calculate a function, deter-
mined by how these spheres deflect a laser shined at some angle, that (perhaps)
can neither be reproduced nor simulated [PRTG02].

New Horizons 201

MEMSecurity. Bruce Donald and his group at Dartmouth have been ex-
ploring using microelectromechanical systems (MEMS) for security problems.
MEMS are tiny devices (typically less than 100 microns) built of elements such
as levers, gears, and springs; potential security applications include cryptogra-
phy without the usual side-channel risks, as well as various hard-to-reproduce
tokens.

HIDE. In a recent result, researchers at Georgia Tech have proposed hardware
support for leakage-Immune Dynamic Execution (HIDE) [ZZPL03]. HIDE
builds on the XOM model, and juggles code blocks between internal caches and
external storage areas to try to keep the adversary from learning information
about a protected execution from observing the address sequence. Further
exploration of these techniques, in the spirit of oblivious RAM and practical
private information retrieval, will be interesting.

SmashGuard. Carla Brodley and colleagues at Purdue have developed Smash-
Guard, an approach that defends against buffer overflow attacks (Section 3.2.1)
by modifying the CPU Such a hardware approach has the advan-
tages of not degrading performance and not requiring re-compilation of legacy
code.

CoPilot. Bill Arbaugh and his students at Maryland have developed CoPilot,
which uses a hardware coprocessor and friendly DMA1 to regularly verify
the integrity of a desktop system [PFMA04]. Among the challenges here is
working through exactly what constitutes integrity within the system and data
components as they resides in memory.

TCG Extensions. Recently, Reiner Sailer and colleagues at IBM Watson have
extended the TCPA/TCG architecture to observe and measure the dynamically
changing state of a fully functional Linux platform [SZJv04]. This work re-
quired carefully wading through the components and dependencies that com-
prise such a complex, dynamic environment.

12.3 Software Research
Research efforts are also examining techniques not based on hardware but

still relevant to trusted computing platforms.

1 ...in contrast to the malicious DMA that might threaten a TCPA/TCG architecture

202 TRUSTED COMPUTING PLATFORMS

12.3.1 Software-based Attestation
A number of recent results have followed up on Bennet Yee’s suggestion

(Section 4.3) of using “behavior and timing checks” to determine integrity and
authenticity of a remote machine.

Genuinity. In 2003, Rick Kennell and Leah Jamieson at Purdue considered the
problem of how to determine whether a remote machine was indeed the “real
thing doing the right thing,” a concept they called Genuinity [KJ03]. In the
Genuinity approach, the relying party challenges the machine to do something
that involves many aspects of the machine’s characteristics and state.

In 2004, Umesh Shankar and colleagues at Berkeley vigorously challenged
these results, and demonstrated a series of attack techniques [SCT04].

SWATT. In 2004, Arvind Seshadri and colleagues at CMU presented SWATT,
a similar software-based technique [SPLK04]. Unlike Genuinity, SWATT tar-
gets isolated embedded systems and avoids the attacks of Shankar.

12.3.2 Hiding in Plain Sight
Another branch of software techniques involve trying to run a sensitive pro-

gram on the adversary’s computer, but using techniques from cryptography and
elsewhere to somehow provide TCP-like security, such as:

assurance that the adversary cannot subvert this computation without detec-
tion, or

assurance that the adversary cannot extract useful knowledge about the al-
gorithm being carried out, or

assurance that the adversary cannot extract useful knowledge about the pa-
rameters to this computation.

Research has provided a history of tantalizing results here, that (at a high
level) might even seem contradictory. In 2001, Boaz Barak and his colleagues
proved an impossibility result Bar]. If we define an obfuscater as a
program that takes another program as input and outputs an obfuscated version
(that is functionally equivalent, but which an adversary cannot understand),
then there exists a family of programs for which every obfuscater will fail
to obfuscate. On the other hand, encrypted functions [ST98, for example]
and multi-party computation [Gol04, Chapter 7, for example] show various
promising results.

Paul van Oorschot also gives a good survey of protection techniques, includ-
ing white-box cryptography and software tamper resistance in [van03].

New Horizons 203

12.4 Current Industrial Platforms
We quickly survey some interesting hardware techniques that are already

part of the industrial base.

12.4.1 Crypto Coprocessors and Tokens
This book has treated the IBM 4758 as an exemplary trusted computing plat-

form. However, as Chapter 5 observed, the 4758 became a commercial product
not because IBM wanted a TCP, but because it wanted a flexible cryptographic
accelerator.

Crypto accelerators and portable personal tokens often end up having several
features that may make them appropriate for TCP applications. These features
may include:

a computational domain separate from the main processor;

some degree of physical security;

hardware support for cryptography;

some amount of programmability.

As Moore’s Law makes hardware smaller and cheaper, one might expect to
see accelerators (such as devices from nCipher and Prism), as well as personal
tokens (such as Dallas iButton, Fortezza card, Java cards, and USB tokens) look
more and more like TCPs. Wave Systems has also been active in this space.

Indeed, IBM has recently produced a follow-on to the 4758, the IBM 4764,
that preserves the same basic security architecture but with greatly increased
computational and cryptographic power [Av04]. Unfortunately, as of this writ-
ing, developers toolkits are not available.

12.4.2 Execution Protection
As Section 3.2.1 discussed, code injection via overflowing a buffer on the

stack of the victim machine remains a common source of compromise in the cur-
rent information infrastructure. AMD [AMD04] and other major CPU vendors
have started supporting execution protection in x86-class CPUs. A long-time
feature of textbook examples, the no execute (NX) tag can prevent the CPU
from executing code the adversary has injected. Both Linux and Windows are
embracing this feature [Mim04, Roo04, for example].

However, many code-injection and attack techniques exist that do not require
an executable stack. For example, consider the return-to-libc attack that Sec-
tion 3.2.1 discussed, or the suite of techniques in pp. 191-196]. It
will be interesting to see to see how NX-enhanced systems withstand adversarial
scrutiny.

204 TRUSTED COMPUTING PLATFORMS

12.4.3 Capability-based Machines
Many old-timers wistfully recall capability-based and tagged architectures,

exemplified by such systems as the CAP Computer at Cambridge [NW77] and
the iAPX 432 architecture from Intel. Encapsulating an address with access
rights, in an architecture that is aware of these rights at a fine granularity, has
the potential for greatly increasing the trustworthiness of a computing platform.

Capability architectures are popularly regarded to have failed and vanished,
even though the “failure” may have followed from other reasons, and even
though current systems such as the AS/400 (and perhaps even the PowerPC)
still support them.

At least one graybeard has suggested that perhaps it is time for a renaissance.

12.5 Looming Industry Platforms
As Chapter 10 discussed, the concepts of trusted computing have been perco-

lating into standard industrial product design. A TPM that records configuration
measurements and locks stored credentials to a particular suite of measurements
is an add-on, peripheral to the main computing elements that occur on the plat-
form. However, industrial efforts also loom that may bring trusted computing
enhancements to these main elements as well.

On the hardware level, Intel and ARM have both been advancing enhance-
ments to CPU architecture to bring increased protections into the processor it-
self. Section 12.5.1 considers Intel’s LaGrande architecture and Section 12.5.2
considers ARM’s TrustZone. On the software level, Microsoft’s Next Gener-
ation Secure Computing Base (NGSCB) is an OS and application architecture
that appears to build on and exploit such hardware foundations; Section 12.5.3
considers this effort.

As with Chapter 10, we need to include several caveats here. Since all of these
projects are moving targets, this discussion will almost certainly be obsolete by
the time it is read. Since this research is closely tied to potentially forthcoming
products, the public availability of information (as well as actual hardware and
software) is currently limited. Unlike TCPA/TCG, a university lab cannot yet
simply download a specification and buy a machine and start experimenting.

12.5.1 LaGrande
Intel’s LaGrande initiative is a security architecture intended to provide a

hardware foundation for more trustworthy computing environments. This archi-
tecture encompasses many elements—including the CPU and the TCPA/TCG
trusted platform module (version 1.2); according to rumors, forthcoming Intel
chipsets may already possess these features, unactivated.

As is often heard about TCPA/TCG, LaGrande is often positioned as pri-
marily defending a platform’s user against software risks. The complexity of

New Horizons 205

commodity operating systems, coupled with the myriad 3rd-party device drivers
that must run at Ring 0 and the myriad channels for external adversaries to ac-
cess an end-user system (and potentially exploit openings such as code-injection
vulnerabilities), make the typical laptop or desktop a dangerous place to run
sensitive code that uses sensitive data.

The driving force behind LaGrande appears to be to solve that problem, using
hardware protections. Standard presentations focus on four main properties:

Protected Execution. The platform needs a safe place for a sensitive ap-
plication to run. Stakeholders need to be able to trust in this safety, even in
the face of permeable, complex system software and potentially adversarial
code.

Sealed Storage. This application needs access to its own data. Stakeholders
need to be able to trust in the secrecy (and presumably integrity) of this data,
against the same threat model.

Attestation. Remote relying parties need to be able to recognize that such
a sensitive application running in such a trustworthy environment is indeed
the “real thing, doing the right thing.”

Protected I/O. The machine in question primarily serves a local human
user. This user and such applications need to a trusted path through which
they can communicate. Keystroke sniffers are a well-known family of mal-
ware; crafting creative Web content that cause browsers to render misleading
security information is a newer risk [FBDW97, YS02, YYS02].

It is interesting to note that, except “Protected I/O,” these are the same prop-
erties we want for a trusted computing platform that can resist physical attack.
As with TCPA/TCG, we might look at a LaGrande platform as another cousin
of the 4758: far more power, but withstanding a different attack model. (It
would also be interesting to examine what resistance against “logic analyzer”
attacks might be possible, both with the current design and with hypothetical
small enhancements, if one assumed the individual chips were secure against
physical attack.)

The main elements of the LaGrande architecture are an enhanced CPU privi-
lege model and the 1.2 TPM. LaGrande revises the basic structure of Figure 12.1
per the new privilege paradigm. Besides “kernel” or “user,” the CPU can also
execute as a standard partition or a protected partition. Apparently, there may
many such partitions, and protected partitions provide more a trustworthy envi-
ronment. The CPU will provide an instruction for securely switching protection
contexts. A domain manager will handle these partitions; if on-chip code is
required to implement the domain manager logic, the chip vendor must sign it,
and the chip will verify the signature.

206 TRUSTED COMPUTING PLATFORMS

The TPM will assist with storing measurements and releasing credentials to
the CPU only when the correct configuration is executing. (One can begin to
see how the “localities” of the 1.2 TPM might work nicely with a new set of
privilege modes in the CPU.)

This combination of enhanced CPU and TPM helps provide the protected
execution, sealed storage, and attestation goals. Other avenues the LaGrande
architecture appears to be considering are protection against malicious DMA,
protection of the graphics card2 (to prevent spoofing attacks—an idea that goes
backat least to 1977 [Kar77, pages 95–100]), and ideas about other trusted paths.
(From the NGSCB architecture—discussed below—one certainly suspects that
LaGrande extends security mode tagging into the memory management unit.)

12.5.2 TrustZone
From a high level, TrustZone is a similar security architecture slowly emerg-

ing from ARM Holdings, which specializes in RISC architectures and drives a
lot of the space for RISC microprocessors in embedded systems. Like the oth-
ers, TrustZone adds the new axis to the basic privilege structure of Figure 12.1.
Unlike LaGrande, TrustZone’s approach is simpler: a single security bit indi-
cates whether the CPU is in normal mode or secure mode. A monitor controls
transitions; a new privileged instruction (secure monitor interrupt) traps to the
controlled entry points in the monitor.

The monitor is intended to be small enough to make formal verification
quite feasible. The monitor handles secure context switching; this task is made
more efficient and simpler by having duplicate bookkeeping structures. A
“security bit” also tags cache lines; normal and secure modes also have separate
scratchpad memory. Other components in the system may also be aware of the
normal/secure partition.

Thus, we start to see how TrustZone can provide protected execution and
some sealed storage. The currently available literature does not yet document
how stakeholder can be sure of which code is running inside the CPU in secure
mode, nor how the code be sure of freshness, secrecy, and integrity of the data
it stores outside the CPU.

12.5.3 NGSCB
A colleague of mine once observed he had never seen hardware do anything

by itself; it usually requires software. Discussing details of new CPU archi-
tectures providing more trustworthy places for code begs the question of how
software will take advantage of that. Similarly, discussing how a major hard-

2Researchers at Columbia University have recently begun examining what might be possible if the graphics
processing unit is the only trusted module on a client machine [CBK04].

New Horizons 207

ware vendor is slowly incorporating this architecture into its chipsets begs the
question of what market forces exist to cause that.

In our society’s current computing environment, Microsoft dominates. It is
natural to conclude that the flip side to the LaGrande architecture (and perhaps
even to TCPA itself) has been the emerging Microsoft security architecture.

The architecture has been emerging slowly. Rumors blossomed into is-
sued patents for a “Digital Rights Management Operating System” [EDL01a,
EDL01b]. Popular press articles about a Palladium architecture [CJPL02],
which seemed based on something like the then-TCPA architecture, only dif-
ferent, turned into the Next Generation Secure Computing Base (NGSCB).
Scholarly articles appeared [EP02, ELM+ 03, for example], and more infor-
mation emerged. The common belief was that NGSCB was going to be part
of Longhorn, a new version of Windows slated for 2006; the Longhorn De-
veloper Preview software development kit even included NGSCB code. Then,
in Spring 2004, Microsoft appeared to be de-emphasizing NGSCB [Roo04,
Fol04]. As of this writing, Microsoft’s Web site lists the NGSCB documenta-
tion as “archived”; no current (non-archived) documentation is offered.

At a high level, one might understand NGSCB as an OS architecture that
exploits the hardware features of LaGrande, while also positioning itself as a
component of an OS with a huge body of legacy software and applications.
Indeed, a feature/constraint that the literature touts repeatedly is the fact that
NGSCB will not restrict what a user can run on her machine. Closing the
environment to only authorized code (as we did with the IBM 4758) is not an
option.

As with LaGrande, the NGSCB architecture advertises that it focuses on de-
fending against the software attacks made possible by today’s messy computing
environments. (“This technology is not designed to provide defenses against
hardware-based attacks that originate from someone in control of the local ma-
chine.” [Mic03]) However, as we observed with LaGrande, it is tempting to
consider how much further one could take this.

NGSCB stresses four key properties that map nicely to the four goals of
LaGrande: “strong process isolation,” “sealed storage,” “trusted path to the
user,” and “attestation.” NGSCB also uses a privilege model that maps to the
quadrants of the new privilege paradigm (Figure 12.2). As is traditional, the user
CPU mode (top row) holds application code and the kernel CPU mode (bottom
row) holds kernel code. Of course, the messy state of current systems make
this distinction weak, as we noted. NGSCB puts the messy current systems in
the left column, and then (like LaGrande and TrustZone) adds a right column
for a special secure mode. Some NGSCB documents even use lhs and rhs (for
“left-hand side” and “right-hand side,” respectively) to refer to these modes.

Unlike LaGrande and TrustZone, NGSCB spells out what software goes
there:

208 TRUSTED COMPUTING PLATFORMS

the nexus (a small security kernel, on the order of thousands of lines of code,
not millions) goes in the secure-kernel quadrant; and

nexus computing agents (NCAs) go in the secure-user quadrant.

NGSCB sketches suggest that multiple different compartments might swap into
this right-hand side.

NGSCB expects the hardware will provide the appropriate functionality, in-
cluding a Security Support Component (labeled as a 1.2 TPM in some diagrams)
as well as possible CPU support for curtained memory: memory management
that restricts RAM pages to the nexus-space only, and even denies DMA there.

12.6 Secure Coprocessing Revisited
It is interesting to consider the path we have traveled here. We started out by

considering the construction and application of secure coprocessors: separate
computational units co-located with a host that was less trustworthy. These co-
processors provide a trustworthy place for small, higher-assurance application
entities that enhance the security of the host computation by cleverly partici-
pating in it. Figure 1.1 illustrated this architecture.

Limitations of this approach (as well as the commercial emergence of TCPA
and TCG) led us to consider the role of a trusted platform module: a sepa-
rate chip that lets us start thinking about the entire host machine as a (less)
trusted computing platform. Academic projects—such as XOM, MIT AEGIS,
and Terra—started moving protections based on a separate TPM to protections
inside the CPU. Industrial projects also move protections inside the CPU. As
Section 12.1 discussed, these emerging architectures add another axis to the
standard privilege architecture. As Figure 12.2 sketched, the “normal” mode is
open and accommodates legacy systems; the “secure” mode provides a more
trustworthy place for small, higher-assurance application entities that enhance
the security of the normal-mode computation by cleverly participating in it.

This looks just like secure coprocessing. Compare Figure 12.2 with Fig-
ure 1.1 back in Chapter 1. We map the normal mode to the host, the secure
mode to the coprocessor, the nexus to the coprocessor OS, and the NCAs to the
coprocessor applications.

How far can we take this analogy? How many of the coprocessor applications
of Chapter 4, Chapter 9 and Chapter 11 will port to a LaGrande architecture?
Can we take LaGrande ideas and move them back to coprocessors? What
are the relative performance, flexibility, and security tradeoffs between a CPU
approach, a TVMM approach, and a secure coprocessor approach?

In this book, we have charted the evolution of trusted computing platform
ideas from decades ago to where they are now: on the cusp of merging with
the dominant processor and operating system architectures. From one direc-

New Horizons 209

tion, we have seen an evolution of specialized coprocessors, that started with
cryptographic accelerators and advanced to incorporate keys, operating sys-
tems, applications, and even PKIs. From the other direction, we have seen an
evolution of techniques to add security to a general-purpose desktop. These
evolutions are now converging.

What’s going to happen next? In another decade, how many of these trusted
computing platform design principles will be standard material in architecture
and OS textbooks?

I cannot wait to see what the answers to these questions are.

12.7 Further Reading
[LTH03] probably gives the best overview of XOM, of AEGIS,

and of Terra.
[Lev84] gives a nice history of capability-based systems; although out of

print, the book is available (for free) online.
For the emerging industrial architectures (Section 12.5), [Sta03] is an open-

literature publication that provides a nice look at LaGrande. However, In-
tel is becoming increasingly open about the architecture, so more sources
will undoubtedly emerge. [Hal03] provides a good overview of TrustZone.
The archived material at Microsoft provide a good overview of NGSCB: the
FAQ [Mic03] and the Security Model [Sec03] are particularly helpful.

GLOSSARY

AEGIS Within the TCP space, two major projects have been named “AEGIS.”
Bill Arbaugh’s doctoral work at Penn examined how to ensure that a standard
machine boots securely (Section 4.3). More recently, Srini Devadas’ group
at MIT has examined how to incorporate protected spaces inside a CPU
(Section 12.2.2).

AES The Advanced Encryption Standard is a symmetric block cipher selected
by the U.S. Government as the replacement to DES, as a strong, general
purpose cipher that should not be vulnerable to brute-force attacks any time
soon.

ANSI The American National Standards Institute establishes standards for
many things, including some cryptographic processes.

ARM Advanced RISC Machines transformed into ARM Holdings, a firm
that specializes in RISC-based CPU technology; ARM is the firm behind
TrustZone. See Section 12.5.2.

asymmetric cryptography Public key cryptography is also sometimes known
as asymmetric cryptography due the asymmetry in its operations and keys.

BBRAM In TCP design, battery-backed RAM is often a good place to store
sensitive data: the batteries keep it non-volatile, but RAM is easier to zeroize
than ROM or FLASH. In our IBM 4758 work, we ended up adopting the
term “BBRAM.”

Bellcore attack The term Bellcore attack is another name for the DFA family
of hardware attacks.

Beneš network A Beneš Network is a compact circuit of O(N log N) binary
switches that can generate any shuffle of its N inputs, depending on how the
switches are set. See Section 9.4.4.

212 TRUSTED COMPUTING PLATFORMS

BIOS On modern computing systems, the first thing a machine executes at
reset is basic input/output system (BIOS): a fundamental, simple block of
code.

bridge Much of PKI focuses on how Alice can construct a certificate chain
from one of her trust roots to the signer of Bob’s certificate. If an Alice and
Bob are in separate enterprises, typically their enterprise CAs either cross-
certify each other, or both become subordinate CAs to some higher-level
one. In the cross-certification approach, N enterprises require cross-
certifications. A way to simplify this arrangement is to have a designated
bridge CA exist solely for cross-certification—so that this clique
reduces to an O(N) star.

CA In PKI, a certification authority (CA) is an entity who signs certificates
binding public keys to something useful about the keyholder, such as their
name. In popular use, the term “CA” usually implies a CA who issues X.509
identity certificates, in accordance with standard X.509 practices.

CCA The Common Cryptographic Architecture (CCA) is a family of cryp-
tographic APIs used by many IBM customers. Consequently, CCA appli-
cations are one of the common uses of the the IBM 4758 platform. See
Section 5.1.2.

Cerium Cerium is a project from MIT designed to support certified execution
within a hardened CPU. See Section 12.2.3.

CP/Q++ CP/Q the embedded operating system we chose as the foundation
for an OS layer for the IBM 4758 secure coprocessor. We deleted some
modules and added others and, as a joke, called the result “CP/Q++.” The
joke became the official name.

cryptopaging Bennet Yee invented the concept of cryptopaging: using a
host’s memory as the backing store for the virtual memory system within a
secure coprocessor. See Section 4.2.2.

DES The data encryption standard (DES) is a symmetric block cipher es-
tablished by the U.S. government in 1975 and, after a time, widely adopted.
Conventional wisdom still says the design is basically secure—except the
56-bit keyspace is now quite vulnerable to brute-force search. (DES was
based the earlier Lucifer cipher from IBM.)

DFA Differential Fault Analysis (DFA) is a family of attacks on which the
adversary induces an error in a device and then uses the subsequent incorrect
operation to learn secrets. See Section 3.1.

digital signature In a digital signature scheme, Alice can calculate a signature
from a message, such that only she can produce that signature, but anyone
else can verify it.

Glossary 213

DMA Direct Memory Access (DMA) is a hardware technique that enables
peripherals to access system memory without going through the CPU.

DPA Differential Power Analysis (DPA) is an attack technique in which an
adversary learns internal secrets of a device by using statistical methods on
a set of power traces. See Section 3.3.2.

DRAM One way to build RAM is to have an array of capacitors, one for
each bit. The charge of the capacitor corresponds to the value stored at that
bit. This dynamic RAM (DRAM) approach allows for inexpensive, space-
efficient semiconductor memory—at the cost of having to continually read
the bits and refresh them before the charge drains away.

DRM Over history, commerce in physical media (such as books) implicitly
came to depend on physical properties of these media—for example, it is
easy to give a book away, but considerably harder to copy it. These physical
restrictions led to rules of behavior that law and practice explicitly codified
as rights—for example, consumer Alice may have the right to buy a book
and then loan or sell it to Bob, but Alice may not have the right to make
copies of this book and sell them. However, as media become digital, the
physical restrictions no longer apply. Digital Rights Management (DRM)
refers to the set of challenges—technical and otherwise—in trying to codify
and enforce these usage rights in digital media.

DSA The Digital Signature Algorithm (DSA) is a digital signature algorithm
produced by the NSA and sanctioned by the U.S. government, as the officially
blessed substitute for RSA. At the time, the motivations for a substitute
appeared to step from both economics (DSA was intended to be free of
patent encumbrances) as well as espionage (DSA only supported signatures;
it did not support encryption).

Dyad Dyad was a TCP project built by Bennet Yee and Doug Tygar at CMU
using the IBM Citadel prototypes for secure coprocessing applications. See
Section 4.1.4.

dynamic RAM See DRAM.
EEPROM Electrically Erasable Programmable Read-Only Memory is a type

of non-volatile semiconductor memory that permits a limited number of
updates, usually on a word basis.

endianness Computer memory is typically organized as a linear array of bytes
indexed by address. For a data item (such as a 32-bit integer) that requires a
sequence of several bytes, the question arise: which end should come first?
Architectures typically adopt a standard convention—e.g., “little endian” or
“big endian.”

FIPS The Federal Information Processing Standards (FIPS) are a sequence
of standards promulgated by NIST. Usually, a FIPS standard consists both
of the set of rules in the standards document itself, as well as a process by

214 TRUSTED COMPUTING PLATFORMS

which NIST can officially bless products as being compliant with those rules.
FIPS address many cryptographic and security practices. In theory, U.S. law
requires government players to purchase only FIPS-validated products.

FLASH FLASH is a type of non-volatile semiconductor memory that can be
erased and reprogrammed in the field. See Section 3.4.2.

FSM The FIPS 140-N validation process required finite state machine (FSM)
models of the platform. See Section 8.2.

Genuinity In 2003, researchers from Purdue proposed a way to verify whether
a remote system was indeed what we in the TCP community had been calling
“the real thing doing the right thing.” The Purdue approach presented the
machine with a series of challenges and examined the values and timing of
the responses. Genuinity was the name the researchers used for the general
concept of “the real thing doing the right thing,” but the community came
to use the term to denote this specific approach. Follow-on work vigorously
challenges the Purdue approach. See Section 12.3.1.

GPG The GNU Privacy Guard is an open-source implementation of PGP.

hash A hash function takes a message (usually arbitrary) to a fixed-length
hash value. A cryptographic hash function usually is usually assumed to
have other critical properties, such as being irreversible (it is computationally
infeasible to find a message that maps to a given hash value) and collision-
resistant (it is computationally infeasible to find two different messages that
map to the same hash value). Although other types of hash functions exist in
computer science, the universal presence of cryptographic hash functions in
security work has eclipsed these other usages; say “hash” and everyone will
assume “cryptographic hash.” (Ralph Merkle has been quoted as saying that
hash functions are the “duct tape of cryptography.”)

HCISEC HCISEC is an emerging research field that examines the interaction
between usability and security.

HIDE Researchers at Georgia Tech have recently proposed hardware sup-
port for leakage-Immune Dynamic Execution (HIDE), a system to keep an
adversary monitoring the address bus from learning what a CPU is doing.
See Section 12.2.6.

HMAC Hash-based MAC (HMAC) is a well-regarded way to build a keyed-
MAC function from a hash function.

kernel mode Conventional CPU privilege architecture offers two modes of
execution; kernel mode is the name commonly given to the higher-privileged
mode. See Section 12.1

LaGrande LaGrande is the codename for a new Intel security architecture;
the term is popularly used to refer both the architecture as well as to the
chipset supporting that architecture. See Section 12.5.1.

Glossary 215

Layer N In the IBM 4758 architecture, we divided software (and privileges)
into a series of layers. Within this discussion of TCP, Layer N usually refers
to a particular layer within that structure. See Section 5.4.

LBBRAM In the IBM 4758 architecture, we used hardware locks to provide
additional protections to some of the BBRAM. We termed this protected
region Lockable BBRAM (LBBRAM). See Section 6.4.3.

Level N The FIPS 140-1 and FIPS 140-2 standards for cryptographic mod-
ules provide an increasing series of security levels, from Level 1 (which
some wags claim mean “the module possesses a manual”) to Level 4. See
Section 8.1.2.

LDAP The Lightweight Directory Access Protocol (LDAP) is a standard pro-
tocol for providing (and accessing) directory services over the net.

LHS Discussions of NGSCB often use left-hand side (LHS) to refer to the
open, normal mode of CPU execution. See Figure 12.2 and Section 12.5.3.

LOCK The Logical Coprocessing Kernel (LOCK) was a US Government
project from the 1970s to use hardware to accelerate security operations in
high-assurance computing systems. See Section 4.4.

Longhorn Longhorn is the codename for a forthcoming version of Windows
which, for a time, was reputed to include NGSCB.

LT Discussions of LaGrande often use the acronym LT for “LaGrande tech-
nology.”

MAC In cryptography, a message authentication code (MAC) usually refers
to a way of generating a code from a message that is infeasible without know-
ing a specific key. Because MACs are generally built from fast symmetric
ciphers, I like to think of them as a “poor man’s digital signature.” The
literature also sometimes calls these keyed MACs—apparently to remind the
reader that a secret key is required. Some treatments also call them Message
Integrity Codes (MICs).

MEMS Microelectromechanical systems (MEMS) are tiny physical systems
built from things like gears and wires. Some researchers are currently ex-
amining MEMS as a new form of security hardware. See Section 12.2.6.

Miniboot In the IBM 4758 platform, platform security was controlled by
Miniboot, the software that ran before the OS booted. Miniboot 0 resided in
ROM; Miniboot 1 resided in rewritable FLASH.

naive In computer science parlance, a naive approach is one that everyone
thought was natural and correct, until someone finally had a better insight.
Consequently, the term does not usually have much of a pejorative connota-
tion.

216 TRUSTED COMPUTING PLATFORMS

NGSCB The Next-Generation Secure Computing Base (NGSCB) is the emerg-
ing Microsoft security architecture formerly called Palladium. See Sec-
tion 12.5.3.

NIC A network interface card (NIC) lies between a machine and its network.
See Chapter 1.

non-volatile Non-volatile storage does not lose its contents when device
power is removed.

NX New x86-class CPUs have introduced execution protection (“NX”) that
marks memory regions as not executable; both Windows and Linux have
announced support. See Section 12.4.2.

oblivious circuits One type of computation engine is a circuit, a set of of
interconnected gates. The input values go in one side and the output comes
out the other. In an oblivious circuit, the internal wires are encrypted and
the gates each have some hidden control bits—so the adversary who cannot
see inside the gates cannot know the details of the computation. We can
sometimes use this technique to calculate secret functions on large data using
small TCPs. See Section 9.4.4.

oblivious RAM The term oblivious RAM (ORAM) refers a set of techniques,
initially theoretical, by which a party can issue reads and writes to RAM
while hiding information—particularly access patterns—from an adversary
who monitors the buses.

opcode An opcode is the actual binary sequence that embodies an executable
instruction for a hardware processor.

ORAM See oblivious RAM.

P2P Peer-to-peer (P2P) applications and overlay networks have been a pop-
ular distributed computing paradigm in recent years. P2P systems try to
make no distinction between client and server, and also try to incorporate
principles of decentralization and self-organization.

Palladium Palladium was the initial name for the Microsoft security initiative
that subsequently was renamed NGSCB; by some accounts, a trademark issue
triggered the name change.

PCR In the TCPA/TCG architecture, a platform configuration register (PCR)
stores measurements of system configuration. See Section 10.1.

permutation A permutation is a bijective map from a set to itself. In our
private information work, we use the term “permutation” to refer to this
function on a set of integers that are indices of some other set; see shuffle.

PGP Used mainly for signing and encrypting e-mail, Pretty Good Privacy
(PGP) is a relatively unstructured approach to PKI where keyholders endorse
other keyholder’s keys, and can use fairly flexible “web of trust” policies to
make trust judgments.

Glossary 217

PIR Private information retrieval (PIR) is the initially theoretical problem of
how a client can obtain a particular record from a server without the server
knowing for which record the client asked. See Section 9.4.2.

PKI Public key infrastructure (PKI) refers to the technology necessary to
use public key cryptography to solve trust problems in large populations.
Many speakers use “PKI” to refer particularly to the problem of learning
and verifying certificates for other parties (but in my lab, we like to take a
broader view).

POST Many systems perform a power-on self-test (POST) at start-up; POST
is usually so low-level that it runs before the operating system even boots
and may even reside in ROM.

PPIR Dave Safford and I used the term practical private information retrieval
(PPIR) to refer to solving the PIR problem (asking a server for a record,
without the server knowing which one) while working within a real-world
Web/SSL paradigm. See Section 9.4.

private key See public key.

PRNG A pseudorandom number generator (PRNG) generates numbers that
are computationally indistinguishable from a truly random sequence. Gener-
ally, we use PRNGs in TCP design when we need to amplify a small number
of random bits into a much larger sequence of bits that are random enough.

public key Public key cryptography Cryptosystems generate a key pair, con-
sisting of a public key and a private key, with the property that it is infeasible
to calculate the private key from the public key. Because this approach to
cryptography separates the privileges into two different keys, it enables many
useful forms of trusted communication between parties that share no secrets
a priori.

relying party In PKI parlance, a relying party is one who is trying to reach
some trust decision about a particular public key.

RHS Discussions of NGSCB often use right-hand side (RHS) to refer to the
closed, secure mode of CPU execution. See Figure 12.2 and Section 12.5.3.

Ring N The x86 CPU family provides four increasing levels of internal priv-
ilege, Ring 0 (corresponding to kernel mode) through Ring 3 (corresponding
to user mode). Ring 1 and Ring 2 are seldom used. Some researchers use
Ring -1 to refer to a hypothetical privilege mode that is even more privileged
than Ring 0.

RISC The Reduced Instruction Set Computing (RISC) approach to hardware
gambles that by simplifying the instruction set, we can simplify the CPU and
gain greater efficiency.

RNG A random number generator (RNG) generates random bits, unpre-
dictable by the adversary.

218 TRUSTED COMPUTING PLATFORMS

RSA Rivest Shamir Adleman (RSA) was the breakthrough public key cryp-
tosystem, and remains the de facto universal standard.

RTM In TCPA/TCG parlance, the root of trust for measurement (RTM) is
the platform entity (e.g., BIOS) that the starts the platform configuration
measurement process by measuring itself—and can thus subvert the whole
process by lying. See Section 10.1.

SHA-1 The secure hash algorithm, revision 1 (SHA-1) is currently widely
accepted as the cryptographic hash algorithm of choice.

Shibboleth Shibboleth is a middleware system from Internet2 that enables
an institution to share electronic resources over the Web with individuals
from another institution, while abiding by inter-institutional access policy
and without forcing a change in how individuals already authenticate to their
home institutions. See Section 9.4.1.

shuffle In our private information work, we use the term shuffle to refer to
the rearrangement of an indexed set according to some permutation on its
indices.

sHype sHype is a secure hypervisor project housed at IBM Research. See
Section 12.2.5.

SIDEARM The System-Independent Domain-Enforcing Assured Reference
Monitor (SIDEARM) was a hardware module inside the early LOCK system.
See Section 4.4.

S/MIME S/MIME is a format for incorporating encryption and digital signa-
tures in electronic mail.

SPA Simple Power Analysis is an attack technique in which an adversary learns
internal secrets of a device by examining a power trace. See Section 3.3.2.

SRAM See static RAM.

SSL The secure sockets layer (SSL) protocol is a way for two parties to estab-
lish a secure tunnel over the network. Although intended to support general
protocols, SSL is used in practice primarily to support secure connections
from a Web browser to a Web server; in popular parlance, “SSL” refers
exclusively to Web traffic served over an SSL channel.

static RAM One way to build semiconductor RAM is to have an array of flip-
flops, one for each bit. This approach requires more complex circuitry than
dynamic RAM (since a flip-flop is significantly more than one capacitor),
but does not require the complexity of refreshing.

SWATT SWATT is a recent approach to verify whether a particular isolated
embedded system is indeed “the real thing the right thing,” by presenting
challenges and observing the values and timings of responses. See Sec-
tion 12.3.1.

Glossary 219

symmetric key cryptography Before public key cryptography emerged in
the 1970s, the only way to do cryptography required both parties to know the
same secret key. Symmetric key cryptography (or sometimes just symmetric
crypto) refers to this approach. Although it has more limited functionality
than public key cryptography, symmetric cryptography still finds much use
due to its higher performance.

TCG The Trusted Computing Group (TCG) is the consortium currently driv-
ing the TCPA/TCG architecture.

TCPA The Trusted Computing Platform Alliance (TCPA) is the now-defunct
consortium that original drove the TCPA/TCG architecture. In popular par-
lance, the term TCPA is sometimes still used to refer to the architecture itself.

TCP A trusted computing platform (TCP) is a device that uses some de-
gree of hardware enhancement to provide increased trustworthiness. See
Section 1.1.

TDES Although now considered weak because its 56-bit keyspace is vulnera-
ble to brute-force search, the DES symmetric block cipher is still considered
otherwise more or less sound. Consequently, many applications iterate three
rounds of DES to build a symmetric block cipher with a stronger keyspace
(112 bits or 168 bits, depending on the construction). The term triple DES
(TDES) refers to ciphers built this way. (However, now that AES has emerged,
one expects to see uses of TDES giving way to AES.)

TEMPEST According to rumors, TEMPEST was a classified project that de-
veloped an extensive suite of defense technology against side-channel anal-
ysis. See Section 3.3.

Terra Terra is a recent design (and limited prototype) for building a TCP by
securely virtualizing the CPU and machine. See Section 12.2.5.

TOCTOU A time-of-check/time-of-use (TOCTO U) vulnerability occurs when,
during the duration between when a system tests a condition and when it acts
on the results of that test, the condition may cease to hold. See Section 3.2.4.

TPM The heart of the TCPA/TCG architecture is a trusted platform module
(TPM), a separate chip from the CPU that provides a credential store keyed
to platform configuration information. See Section 10.1.

TRM Steve Kent’s doctoral research explored the use of what he termed
tamper-resistant modules (TRMs). See Section 4.1.1.

TSS The TCPA/TCG architecture includes a TCG Software Stack (TSS) that
uses the TPM. A specification has recently been publicly released.

TVMM A trusted virtual machine monitor (TVMM) aspires to add security
protections between the virtual machines it supports. See Section 12.2.5.

220 TRUSTED COMPUTING PLATFORMS

user mode Conventional CPU privilege architecture offers two modes of
execution; user mode is the name commonly given to the lower-privileged
mode. See Section 12.1

VMM A virtual machine monitor (VMM) supports multiple images of “vir-
tual” machines. See Section 12.2.5.

volatile Volatile storage is not guaranteed to retain its contents when device
power is removed.

X.509 X.509 is a family of standards for handling public key certificates.
x86 The x86 family, based on Intel designs, is probably the dominant CPU

architecture on laptops and desktops today.
XOM Execute-Only Memory (XOM) is an approach to hardening CPUs by

supporting executables that can only be decrypted inside an internal protected
space. See Section 12.2.1.

zeroize “Zeroize ” is the term the TCP field uses to refer to the rapid destruction
of memory contents in the face of attack.

References

[AARR] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-
Channel(s): Attacks and Assessment Methodologies. Technical report, IBM
Research. http://www.research.ibm.com/intsec/emf-paper.ps.

[AB96] R. Anderson and S. Bezuidenhoudt. On the Reliability of Electronic Payment
Systems. IEEE Transactions on Software Engineering, 22(5):294–301, 1996.

C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault Attacks
on RSA with CRT: Concrete Results and Practical Countermeasures. In Cryp-
tographic Hardware and Embedded Systems—CHES 2002, pages 260–275.
Springer-Verlag LNCS 2523, 2003.

[ADDS91] D.G Abraham, G.M. Dolan, G.P. Double, and J.V. Stevens. Transaction security
system. IBM Systems Journal, 30(2):206–229, 1991.

[AF03] D. Asonov and J. Freytag. Almost Optimal Private Information Retrieval. In
Privacy Enhancing Technologies—PET 2002, pages 209–223. Springer-Verlag
LNCS 2482, 2003.

[AFS97] W. Arbaugh, D. Farber, and J. Smith. A Secure and Reliable Bootstrap Archi-
tecture. In Proceedings of the 1997 Symposium on Security and Privacy, pages
65–71. IEEE, 1997.

[AK96] R. Anderson and M. Kuhn. Tamper Resistance—A Cautionary Note. In Pro-
ceedings of the 2nd USENIX Workshop on Electronic Commerce, pages 1–11,
1996.

[AK97] R. Anderson and M. Kuhn. Low Cost Attacks on Tamper Resistant Devices.
In Proceedings of the 1997 Security Protocols Workshop, pages 125–136.
Springer-Verlag LNCS 1361, 1997.

[AMD04] AMD and Microsoft to Provide Customers New Security Technology. Press
release, February 2004.

[Anda] R. Anderson. TCPA/Palladium Frequently Asked Questions. http://www.
cl.cam.ac.uk/users/rja14/tcpa-faq.html.

222 REFERENCES

[Andb] R. Anderson. Two Remarks on Public Key Cryptology.http: //www. ftp. cl.
cam.ac.uk/ftp/users/rja14/forwardsecure.pdf. This write-up docu-
ments Ross’s invited lecture at the ACM Conference on Computer and Com-
munications Security in 1997, and is regarded as the seminal work in forward
security in public-key cryptography.

[And01] R. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. John Wiley & Sons, 2001.

[ARR03] D. Agrawal, J.R. Rao, and P. Rohatgi. Multi-channel Attacs. In Cryptographic
Hardware and Embedded Systems—CHES 2003, pages 2–16. Springer-Verlag
LNCS 2779, 2003.

[Asn04] D. Asnonov. Querying Databases Privately: A New Approach to Private Infor-
mation Retrieval. Springer-Verlag LNCS 3128, 2004.

[AUH99] C. Antonelli, M. Undy, and P. Honeyman. The Packet Vault: Secure Storage
of Network Data. In Proceedings of the Workshop on Intrusion Detection and
Network Monitoring, pages 103–109. USENIX, 1999.

[Av04] T. Arnold and L. van Doorn. The IBM PCIXCC: A New Cryptographic Co-
processor for the IBM eServer. IBM Journal of Research and Development,
48:475–487, 2004.

[BA01] M. Bond and R. Anderson. API-Level Attacks on Embedded Systems. IEEE
Computer, 34:64–75, October 2001.

[Bar] B. Barak. Can We Obfuscate Programs? http://www.math.ias.edu/
~boaz/Papers/obf_informal.html. An informal, accessible discussion
of

[BB03] D. Brumley and D. Boneh. Remote Timing Attacks Are Practical. In Proceed-
ings of the 12th USENIX Security Symposium, pages 1–14, 2003.

S. Beattie, A. Black, C. Cowan, C. Pu, and L. Yang. CryptoMark: Locking the
Stable door ahead of the Trojan Horse. White Paper, WireX Communications
Inc., 2000.

[BDL97] D. Boneh, R.A. DeMilllo, and R.J. Lipton. On the importance of checking
cryptographic protocols for faults. In Advances in Cryptology, Proceedings of
EUROCRYPT ’97, pages 37–51. Springer-Verlag LNCS 1233, 1997. A revised
version appeared in the Journal of Cryptology in 2001.

[BDTW01] D. Boneh, X. Ding, G. Tsudik, and C.M. Wong. A Method for Fast Revocation
of Public Key Certificates and Security Capabilities. In Proceedings of the 10th
USENIX Security Symposium, pages 297–308, 2001.

H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sor-
cerer’s Apprentice Guide to Fault Attacks. In Workshop on Fault Detection and
Tolerance in Cryptography, 2004. http://www.gemplus.com/smart/r_d/
publications/pdf/BCN_04sor.pdf.

[Bes80] R. Best. Preventing Software Piracy with Crypto-Microprocessors. In Proceed-
ings of the IEEE Spring Compcon 80, pages 466–469, 1980.

REFERENCES 223

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (Im)possibility of Obfuscating Programs. In Advances in
Cryptology—Crypto 01, pages 1–18. Springer-Verlag LNCS 2139, 2001.

[CBK04] D. Cook, R. Baratto, and A. Keromytis. Remotely Keyed Cryptographics:
Secure Remote Display Access Using (Mostly) Untrusted Hardware. http:
//www1.cs.columbia.edu/˜dcook/pubs/rkey050504.pdf, May 2004.
Manuscript.

[Cha84] D. Chaum. Design Concepts for Tamper Responding Systems. In Advances in
Cryptology—Proceedings of Crypto 83, pages 387–392. Plenum, 1984.

[Cha85] D. Chaum. Security without Identification: Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[CJPL02] A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft “Palladium”: A
Business Overview. Microsoft PressPass, August 2002.

[CLRS01] T. “BBQ” Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. McGraw-Hill, 2nd edition, 2001.

[Clu03] J.S. Clulow. The Design and Analysis of Cryptographic APIs for Security
Devices. Master’s thesis, University of Natal, Durban, South Africa, 2003.

[CM03] B. Chen and R. Morris. Certifying Program Execution with Secure Processors.
In 9th Hot Topics in Operating Systems (HOTOS-IX), 2003.

[Com04] Common Criteria for Information Technology Security Evaluation. Version 2.2,
Revision 256, CCIMB-2004-01-001, January 2004.

[CW96] E. Clarke and J. Wing. Formal Methods: State of the Art and Future Directions.
ACM Computing Surveys, 28:626–643, 1996.

[Dep85] Department of Defense Trusted Computer System Evaluation Criteria. DoD
5200.28-STD, December 1985. This is better known as the “Orange Book,”
due to the color of the cover on the hardcopy.

J. Dyer, M. Lindemann, R. Perez, R. Sailer, S.W. Smith, L.van Doorn, and
S. Weingart. Building the IBM 4758 Secure Coprocessor. IEEE Computer,
34:57–66, October 2001.

[DPSL99] J. Dyer, R. Perez, S.W. Smith, and M. Lindemann. Application Support Archi-
tecture for a High-Performance, Programmable Secure Coprocessor. In 22nd
National Information Systems Security Conference, October 1999.

[EDL01a] P. England, J. DeTreville, and B. Lampson. Digital Rights Management Oper-
ating System, December 2001. United States Patent 6,330,670.

[EDL01b] P. England, J. DeTreville, and B. Lampson. Loading and Identifying a Digital
Rights Management Operating System, December 2001. United States Patent
6,327,652.

P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A Trusted
Open Platform. IEEE Computer, pages 55–62, July 2003.

224 REFERENCES

[EP02] P. England and M. Peinado. Authenticated Operation of Open Computing De-
vices. In Information Security and Privacy, pages 346–361. Springer-Verlag
LNCS 2384, 2002.

[FBDW97] E. Felten, D. Balfanz, D. Dean, and D. Wallach. Web Spoofing: An Internet
Con Game. In 20th National Information Systems Security Conference, 1997.

[Fel03] E. Felten. Understanding Trusted Computing. IEEE Security and Privacy,
pages 60–62, May/June 2003.

[Fol04] M. Foley. Microsoft: ‘Palladium’ Is Still Alive and Kicking. Microsoft Watch,
May 2004.

[GA03] S. Govindavajhala and A.W. Appel. Using Memory Errors to Attack a Virtual
Machine. In Proceedings of the 2003 Symposium on Security and Privacy,
pages 154–165. IEEE, 2003.

[GCvD02] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon Physical Ran-
dom Functions. In Proceedings of the 9th ACM Conference on Computer and
Communications Security, pages 148–160, 2002.

[GGKL89] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The Digital Distributed
System Security Architecture. In Proceedings of the 12th NIST-NCSC National
Computer Security Conference, pages 305–319, 1989.

[GO96] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Obliv-
ious RAMs. Journal of the ACM, 43(3):431–473, 1996.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2004.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A Virtual
Machine-Based Platform for Trusted Computing. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP 2003), pages 193–
206, 2003.

[GSTY96] H. Gobioff, S.W. Smith, J.D. Tygar, and B.S. Yee. Smart Cards in Hostile
Environments. In Proceedings of the 2nd USENIX Workshop on Electronic
Commerce, pages 23–28,1996.

[Gun90] C. Gunther. An Identity-Based Key-Exchange Protocol. In Advances in
Cryptology—Eurocrypt ’89, pages 29–37. Springer-Verlag LNCS 434, 1990.

[Gut96] P. Gutmann. Secure Deletion of Data from Magnetic and Solid-State Memory.
In Proceedings of the 6th USENIX Security Symposium, pages 77–89, 1996.

[Gut01] P. Gutmann. Data Remanence in Semiconductor Devices. In Proceedings of
the 10th USENIX Security Symposium, pages 39–54, 2001.

[Gut04] P. Gutmann. Cryptographic Security Architecture: Design and Verification.
Springer-Verlag, 2004.

[Hal03] T. Halfhill. ARM Dons Armor: TrustZone Security Extensions Strengthen
ARMv6 Architecture. Microprocessor Report 8/25/03-01, August 2003.

REFERENCES 225

[HG04] A. Herzberg and A. Gbara. Protecting (even) Naive Web Users, or: Preventing
Spoofing and Establishing Credentials of Web Sites. Cryptology ePrint Archive,
Report 2004/155, 2004. http://eprint.iacr.org/.

[Hig86] H.J. Highland. Electromagnetic Radiation Revisited. Computers and Security,
5:85–100, 1986.

[HKK93] H. Härtig, O. Kowalski, and W. Kühnhauser. The BirliX Security Architecture.
Journal of Computer Security, 2(1):5–21, 1993.

[HMMW95] W. Havener, R. Medlock, R. Mitchell, and R. Walcott. Derived Test Require-
ments for FIPS PUB 140-1. National Institute of Standards and Technology,
1995.

[IAPR02] N. Itoi, W. Arbaugh, S. Pollack, and D. M. Reeves. Personal Secure Booting.
In Information Security and Privacy, pages 130–144. Springer-Verlag LNCS
2384, 2002.

[IBM] IBM Watson Global Security Analysis Lab. TCPA Resources. http://www.
research.ibm.com/gsal/tcpa.

[IS03a] A. Iliev and S.W. Smith. Privacy-Enhanced Credential Services. In 2nd Annual
PKI Research Workshop. NIST/NIH/Internet2, April 2003.

[IS03b] A. Iliev and S.W. Smith. Prototyping an Armored Data Vault: Rights Manage-
ment for Big Brother’s Computer. In Privacy Enhancing Technologies—PET
2002, pages 144–159. Springer-Verlag LNCS 2482, 2003.

[IS04a] A. Iliev and S.W. Smith. Enhancing User Privacy via Trusted Computing at
the Server: Two Case Studies. IEEE Security and Privacy, 2004. Accepted for
publication.

[IS04b] A. Iliev and S.W. Smith. Private Information Storage with Logarithmic-space
Secure Hardware. In Information Security Management, Education, and Pri-
vacy, pages 201–216. Kluwer, 2004.

[Ito00] N. Itoi. Secure Coprocessor Integration with Kerberos V5. In Proceedings of
the 9th USENIX Security Symposium, pages 113–128, 2000.

[Jia01] S. Jiang. WebALPS Implementation and Performance Analysis: Using Trusted
Co-servers to Enhance Privacy and Security of Web Interactions. Master’s
thesis, Dartmouth College Department of Computer Science, June 2001.

[JSM01] S. Jiang, S.W. Smith, and K. Minami. Securing Web Servers against Insider
Attack. In Seventeenth Annual Computer Security Applications Conference,
pages 265–276. IEEE Computer Society, 2001.

[KA98] M. Kuhn and R. Anderson. Soft Tempest: Hidden Data Transmission Using
Electromagnetic Emanations. In Information Hiding 1998, pages 124–142.
Springer-Verlag LNCS 1525, 1998.

[Kar77] P. Karger. Non-Discretionary Access Control for Decentralized Computing
Systems. Master’s thesis, Massachusetts Institute of Technology Laboratory

226 REFERENCES

for Computer Science, 1977. Available as Technical Report MIT/LCS/TR-199;
see http://ncstrl.mit.edu/.

[Ken80] S. Kent. Protecting Externally Supplied Software in Small Computers. PhD
thesis, Massachusetts Institute of Technology Laboratory for Computer Science,
1980.

[KJ03] R. Kennell and L. Jamieson. Establishing the Genuinity of Remote Computer
Systems. In Proceedings of the 12th USENIX Security Symposium, pages 295–
308, 2003.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
Cryptology—Crypto 99. Springer-Verlag LNCS 1666, 1999.

J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R. Hassell.
The Shellcoder’s Handbook: Discovering and Exploiting Security Holes. Wiley,
2004.

[KM97] M. Kaufmann and J. S. Moore. An Industrial Strength Theorem Prover for a
Logic Based on Common Lisp. IEEE Transactions on Software Engineering,
23(4):203–213, 1997.

[KM00] R. Kohlas and U. Maurer. Reasoning about Public-Key Certification: On Bind-
ings Between Entities and Public Keys. Journal on Selected Areas in Commu-
nications, 18:551–560, 2000.

[Kno01] E. Knop. Secure Public-Key Services for Web-Based Mail, August 2001. Senior
Thesis, Dartmouth College Department of Computer Science.

[Koc96] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology—Crypto 96. Springer-Verlag
LNCS 1109,1996.

[KS74] P. Karger and R. Schell. MULTICS SecurityEvaluation: Vulnerability Analysis.
Technical Report EDS-TR-74-193, Vol II, Hanscom AFB, Electronic Systems
Division (AFSC), 1974.

[KS94] G. Kim and E. Spafford. The Design and Implementation of Tripwire: a File
System Integrity Checker. In Proceedings of the 2nd ACM Conference on Com-
puter and Communications Security, pages 18–29. ACM, ACM Press, 1994.

[Kuh02] M. Kuhn. Optical Time-Domain Eavesdropping Risks of CRT Displays. In
Proceedings of the 2002 Symposium on Security and Privacy, pages 3–18.
IEEE, 2002.

[Kuhar] M. Kuhn. Electromagnetic Eavesdropping Risks of Flat-Panel Displays. In
Privacy Enhancing Technologies, Fourth International Workshop. Springer-
Verlag LNCS, To appear.

P. Karger, M. Zurko, D. Bonin, A. Mason, and C. Kahn. A Retrospective on
the VAX VMM Security Kernel. IEEE Transactions on Software Engineering,
17:1147–1165, 1991.

REFERENCES 227

[LABW92] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in Dis-
tributed Systems: Theory and Practice. ACM Transactions on Computer Sys-
tems, 10(4):265–310, 1992.

[LBK04] M. Lorch, J. Basney, and D. Kafura. A Hardware-secured Credential Repos-
itory for Grid PKIs. In 4th IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2004.

[Lev84] H. Levy. Capability-Based Computer Systems. Digital Press, 1984. Out of print,
but a free online copy lives at http://www.cs.washington.edu/homes/
levy/capabook/.

[LIB04] R. Lee, C. Irvine, and T. Benzel. Research Agenda for Unified Core Mechanisms
in Highly Secure Mobile Platforms. In Security Challenges at the Foundation:
Secure Computing Enabled by Hardware, Firmware and Low-Level Software.
DARPA Invitational Workshop, 2004.

[LMTH03] D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz. Specifying and Verifying
Hardware for Tamper-Resistant Software. In Proceedings of the 2003 Sympo-
sium on Security and Privacy, pages 166–177. IEEE, 2003.

[LR88] M. Luby and C. Rackoff. How to Construct Pseudo-Random Permutations
from Pseudo-Random Functions. SIAM Journal on Computing, 17(2):373–386,
1988.

[LS01] M. Lindemann and S.W. Smith. Improving DES Coprocessor Throughput for
Short Operations. In Proceedings of the 10th USENIX Security Symposium,
pages 67–81, August 2001.

[LTH03] D. Lie, C. Thekkath, and M. Horowitz. Implementing an Untrusted Operating
System on Trusted Hardware. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP 2003), pages 178–192, 2003.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. Architectural Support for Copy and Tamper Resistant Software.
In Proceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems—ASPLOS-IX, pages 168–
177, 2000.

[Mar04] J. Marchesini. HEMP: Hardware-Enhanced MyProxy, June 2004. Ph.D. thesis
proposal, Dartmouth College Department of Computer Science.

[Mau96] U. Maurer. Modelling a Public-Key Infrastructure. In Computer Security—
ESORICS 96, pages 325–350. Springer-Verlag LNCS 1146,1996.

[Mic03] Microsoft Next-Generation Secure Computing Base—Technical FAQ. Mi-
crosoft TechNet, July 2003.

[Mim04] M. Mimoso. NX Slams Door on Linux Buffer Exploits. SearchEnter-
priseLinux.Com, June 2004.

[ML02] P. McGregor and R. Lee. Virtual Secure Co-Processing on General-purpose
Processors. Technical Report CE-L2002-003, Princeton University, November
2002.

228 REFERENCES

[MS02] J. Marchesini and S.W. Smith. Virtual Hierarchies: An Architecture for Building
and Maintaining Efficient and Resilient Trust Chains. In Proceedings of the 7th
Nordic Workshop on Secure IT Systems—NORDSEC 2002. Karlstad University
Studies, November 2002.

[MSMW03] R. Macdonald, S.W. Smith, J. Marchesini, and O. Wild. Bear: An Open-Source
Virtual Secure Coprocessor based on TCPA. Technical Report TR2003-471,
Dartmouth College Department of Computer Science, August 2003.

J. Marchesini, S.W. Smith, O. Wild, J. Stabiner, and A. Barsamian. Open-
Source Applications of TCPA Hardware. In 20th Annual Computer Security
Applications Conference. IEEE Computer Society, December 2004. To appear.

[MSWM03] J. Marchesini, S.W. Smith, O. Wild, and R. Macdonald. Experimenting with
TCPA/TCG Hardware, Or: How I Learned to Stop Worrying and Love The Bear.
Technical Report TR2003-476, Dartmouth College Department of Computer
Science, December 2003.

[Nat94] National Institute of Standards and Technology. Security Requirements for
Cryptographic Modules. Federal Information Processing Standards Publication
140-1, 1994.

[Nat01] National Institute of Standards and Technology. Security Requirements for
Cryptographic Modules. Federal Information Processing Standards Publication
140-2, 2001.

[Neu95] P. Neumann. Computer-Related Risks. Addison-Wesley, 1995.

[NTW01] J. Novotny, S. Tueke, and V. Welch. An Online Credential Repository for the
Grid: MyProxy. In Proceedings of the 10th International Symposium on High
Performance Distributed Computing (HPDC-10), pages 104–111. IEEE, 2001.

[NW77] R.M. Needham and R. Walker. The Cambridge CAP Computer and its Pro-
tection System. In Proceedings of the 6th Symposium on Operating System
Principles, pages 1–10, 1977.

[Ope03] OpenRISC 1000 Architecture Manual. OPENCORES.ORG, 2003.

H. Ozdoganoglu, T. Vijaykumar, C. Brodley, A. Jalote, and B. Kuperman.
SmashGuard: A Hardware Solution to Prevent Security Attacks on the Function
Return Address. Technical Report TR-ECE 03-13, Purdue University Electrical
and Computer Engineering, 2004.

[Pal92] E. Palmer. An Introduction to Citadel—A Secure Crypto Coprocessor for Work-
stations. Technical Report RC18373, IBM T.J. Watson Research Center, 1992.

[Pea03] S. Pearson, editor. Trusted Computing Platforms: TCPA Technology in Context.
Prentice Hall, 2003.

[Per03] M. Periera. Trusted S/MIME Gateways, May 2003. Senior Honors Thesis,
Dartmouth College Department of Computer Science.

[PFMA04] N. Petroni, T. Fraser, J. Molina, and W.A. Arbaugh. Copilot—a Coprocessor-
based Kernel Runtime Integrity Monitor. In Proceedings of the 13th USENIX
Security Symposium, pages 179–194, 2004.

REFERENCES 229

[PH04] R. Phan and H. Handschuh. On Related-Key and Collision Attacks: The Case
for the IBM 4758 Cryptoprocessor. In Information Security: 7th International
Conference, ISC 2004, pages 111–122. Springer-Verlag LNCS 3225, 2004.
Unfortunately, the authors missed the fundamental point that the 4758 platform
is not the same thing as the CCA application.

[Pri86] W. L. Price. Physical Security of Transaction Devices. Technical Report DITC
4/86, National Physical Laboratory, 1986.

[PRTG02] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical One-Way Functions.
Science, 297:2026–2030, 2002.

[PSST02] A. Perrig, S.W. Smith, D. Song, and J.D. Tygar. SAM: A Flexible and Se-
cure Auction Architecture using Trusted Hardware. eJETA.org: The Electronic
Journal for E-Commerce Tools and Applications, 1, January 2002.

[QS01] J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures
and Countermeasures for Smart Cards. In Smart Card Programming and Secu-
rity, pages 200–210. Springer-Verlang LNCS 2140, 2001.

[QS02] J.-J. Quisquater and D. Samyde. Side channel cryptanalysis. In Atelier SEcurité
des Communications sur Internet (SECI’02), pages 179–184, 2002.

[RBDH97] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod. Using the SimOS Ma-
chine Simulator to Study Complex Computer Systems. Modeling and Computer
Simulation, 7(1):78–103, 1997.

[Res00] E. Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-
Wesley, 2000.

[RG91] D. Russell and G.T. Gangemi. Computer Security Basics. O’ Reilly, 1991.

[RI00] J. Robin and C. Irvine. Analysis of the Intel Pentium’s Ability to Support a
Secure Virtual Machine Monitor. In Proceedings of the 9th USENIX Security
Symposium, 2000.

[Roo04] P. Rooney. Microsoft Shelves NGSCB Project As NX Moves To Center Stage.
CRN, May 2004.

[SA98] S.W. Smith and V. Austel. Trusting Trusted Hardware: Towards a Formal Model
for Programmable Secure Coprocessors. In Proceedings of the 3rd USENIX
Workshop on Electronic Commerce, August 1998.

[SA03] S. Skorobogatov and R. Anderson. Optical Fault Induction Attacks. In Crypto-
graphic Hardware and Embedded Systems—CHES 2002, pages 2–12. Springer-
Verlag LNCS 2523, 2003.

[Saf02a] D. Safford. Clarifying Misinformation on TCPA. http://www.research.
ibm.com/gsal/tcpa/tcpa_rebuttal.pdf, October 2002.

[Saf02b] D. Safford. The Need for TCPA. http://www.research.ibm.com/gsal/
tcpa/why_tcpa.pdf, October 2002.

[SAH00] S.W. Smith, C. Antonelli, and P. Honeyman. Proposal: the Armored Packet
Vault, September 2000. Draft.

230 REFERENCES

[Say02] O. Saydjari. LOCK: An Historical Perspective. In 18th Annual Computer
Security Applications Conference, pages 96–108, 2002. This was a “classic
papers” retrospective of a paper from 1987.

E. Suh, D. Clarke, G. Gassend, M. van Dijk, and S. Devadas. Efficient Memory
Integrity Verification and Encryption for Secure Processors. In Proceedings
of the 36th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 339–350, December 2003.

G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: Architec-
ture for Tamper-Evident and Tamper-Resistant Processing. In Proceedings of
the 17th International Conference on Supercomputing, pages 160–171, 2003.

[Sch02] F. Schneider. Secure Systems Conundrum. Communications of the ACM,
45(10): 160, October 2002.

[Sch03a] S. Schoen. Trusted computing: Promise and risk. http://www.eff.org/
Infra/trusted_computing/20031001_tc .php, October 2003.

[Sch03b] S. Schoen. Who Controls Your Computer? Electronic Frontier Foundation
Reports on Trusted Computing. http://www.eff .org/Infra/trusted_
computing/20031002_eff_pr.php, October 2003.

[SCT04] U. Shankar, M. Chew, and J.D. Tygar. Side Effects Are Not Sufficient to Au-
thenticate Software. In Proceedings of the 13th USENIX Security Symposium,
pages 89–102, 2004.

[Sec03] Security Model for the Next-Generation Secure Computing Base. Windows
Platform Design Notes, 2003.

[SGI] SGI IRIX 6.5: Home Page, http://www.sgi.com/software/irix6.5.

[Shy] sHype—Secure Hypervisor. http://www.research.ibm.com/secure_
systems_department/projects/hypervisor/.

[SKv03] D. Safford, J. Kravitz, and L. van Doorn. Take Control of TCPA. Linux Journal,
pages 50–55, August 2003.

[Smi96] S.W. Smith. Secure Coprocessing Applications and Research Issues. Tech-
nical Report Los Alamos Unclassified Release LA-UR-96-2805, Los Alamos
National Laboratory, August 1996.

[Smi01] S.W. Smith. WebALPS: A Survey of E-Commerce Privacy and Security Ap-
plications. ACM SIGecom Exchanges, 2.3:27–34, September 2001.

[Smi02] S.W. Smith. Outbound Authentication for Programmable Secure Coproces-
sors. In Computer Security—ESORICS 2002, pages 72–89. Springer-Verlag
LNCS 2502, October 2002. A revised and extended version will appear in the
International Journal of Information Security.

[Smi03] S.W. Smith. Fairy Dust, Secrets and the Real Worl. IEEE Security and Privacy,
1:89–93, January/February 2003.

[Smi04] S.W. Smith. Probing End-User IT Security Practices—via Homework. The
Educause Quarterly, 27, 2004. To appear.

REFERENCES 231

[SPLK04] A. Seshadri, A. Perrig, L.van Doorn, and P. Khosla. SWAtt: Software-based
Attestation for Embedded Devices. In Proceedings of the 2004 Symposium on
Security and Privacy, pages 272–282. IEEE, 2004.

[SPW98] S.W. Smith, E. Palmer, and S. Weingart. Using a High-Performance, Pro-
grammable Secure Coprocessor. In Financial Cryptography, Second Interna-
tional Conference, FC’98, pages 73–89. Springer-Verlag LNCS 1465, 1998.

[SPWA99] S.W. Smith, R. Perez, S.H. Weingart, and V. Austel. Validating a High-
Performance, Programmable Secure Coprocessor. In 22nd National Informa-
tion Systems Security Conference, October 1999.

[SS01] S.W. Smith and D. Safford. Practical Server Privacy Using Secure Coprocessors.
IBM Systems Journal, 40:683–695, 2001.

[SS03] A. Sadeghi and C Stuble. Taming “Trusted Platforms” by Operating System
Design. In Information Security Applications, pages 286–302. Springer-Verlag
LNCS 2908, 2003.

[SS04] A. Sadeghi and C Stuble. Property-based Attestation for Computing Platforms:
Caring about Properties, not Mechanisms. In New Security Paradigms Work-
shop, September 2004.

[ST98] T. Sander and C. Tschudin. On Software Protection Via Function Hiding. In
2nd International Workshop on Information Hiding, pages 111–123. Springer-
Verlag LNCS 1525, 1998.

[ST04] A. Shamir and E. Tramer. Acoustic cryptanalysis: On nosy people and
noisy machines. Eurocrypt 2004 rump session, 2004. http://www. wisdom.
weizmann.ac.il/˜tromer/acoustic/.

[Sta03] N. Stam. Inside Intel’s Secretive ‘LaGrande’ Project. http://www.
extremetech. com/, September 2003.

[Sun91] SunOS SPARC Integer Division Vulnerability, 1991. CERT Advisory CA-
91:16.

[SW99] S.W. Smith and S. Weingart. Building a High-Performance, Programmable
Secure Coprocessor. Computer Networks, 31:831–860, April 1999.

[SZJv04] R. Sailer, X. Zhang, T. Jaeher, and L. van Doorn. Design and Implementation of
a TCG-Based Integrity Measurement Architecture. In Proceedings of the 13th
USENIX Security Symposium, pages 223–238, 2004.

[The03] The Processor Resource/System Manager (PR/SM) for IBM zSeries z900 is
awarded a certificate by the German Federal Office for Information Technology
Security. Press release, March 2003.

[Tru01] Trusted Computing Platform Alliance. TCPA PC Specific Implementation
Specification, Version 1.00. http://www.trustedcomputinggroup.org,
September 2001.

[Tru02] Trusted Computing Platform Alliance. Main Specification, Version 1.1b.http:
//www.trustedcomputinggroup.org, February 2002.

232 REFERENCES

[Tru03a] Trusted Computing Group. TPM Main Part 1 Design Principles, http:
//www.trustedcomputinggroup.org, October 2003. Specification Version
1.2, Revision 62.

[Tru03b] Trusted Computing Group. TPM Main Part 2 TPM Structures, http: //www.
trustedcomputinggroup.org, October 2003. Specification Version 1.2, Re-
vision 62.

[Tru03c] Trusted Computing Group. TPM Main Part 3 Commands, http://www.
trustedcomputinggroup.org, October 2003. Specification Version 1.2, Re-
vision 62.

[Tru04] Trusted Computing Group. TCG Specification Architecture Overview, http:
//www.trustedcomputinggroup.org, April 2004. Specification Revision
1.2.

[TY91] J.D. Tygar and B.S. Yee. Strongbox: A System for Self-Securing Programs. In
CMU Computer Science: A 25th Anniversary Commemorative, pages 163–197.
Addison-Wesley, 1991.

[TY93] J.D. Tygar and B.S. Yee. Dyad: A System for Using Physically Secure Copro-
cessors. In Proceedings of the Joint Harvard-MIT Workshop on Technological
Strategies for the Protection of Intellectual Property in the Network Multimedia
Environment, April 1993.

[TYH96] J. D. Tygar, B.S. Yee, and N. Heintze. cryptographic Postage Indicia. In Asian
Computing Science Conference, pages 378–391, 1996.

[van85] W. van Eck. Electromagnetic Radiation from Video Display Units: An Eaves-
dropping Risk? Computers and Security, 4:269–286, 1985.

[van03] P.C. van Oorschot. Revisiting Software Protection. In Information Security, 6th
International Conference, ISC 2003, pages 1–13. Springer-Verlag LNCS 2851,
2003.

[vGA01] L. van Doorn, G.Ballintijn, and W. Arbaugh. Signed Executables for Linux.
Technical Report UMD CS-TR-4259, University of Maryland, June 2001.

[VS04] G. Vanrenen and S.W. Smith. Distributing Security-Mediated PKI. In 1st Eu-
ropean PKI Workshop: Research and Applications, pages 218–231. Springer-
Verlag LNCS 3093, 2004.

[Wak68] A. Waksman. A Permutation Network. Journal of the ACM, 15(1):159–163,
1968.

[WC87] S.R. White and L.D. Comerford. ABYSS: A Trusted Architecture for Software
Protection. In IEEE Symposium on Security and Privacy, 1987.

[Wei87] S.H. Weingart. Physical Security for the System. In Proceedings of
the 1987 Symposium on Security and Privacy, pages 52–59. IEEE, 1987.

[Wei00] S. Weingart. Physical Security Devices for Computer Subsystems: A Survey of
Attacks and Defenses. In Cryptographic Hardware and Embedded Systems—
CHES 2000, pages 302–317. Springer-Verlag LNCS 1965, 2000.

REFERENCES 233

[WWAD90] S.H. Weingart, S. White, W. Arnold, and G. Double. An Evaluation System
for the Physical Security of Computing Systems. In Sixth Annual Computer
Security Applications Conference, pages 232–243,1990.

[WWAP91] S. White, S.H. Weingart, W. Arnold, and E. R. Palmer. Introduction to the
Citadel Architecture: Security in Physically Exposed Environments. Technical
Report RC16672, IBM T.J. Watson Research Center, 1991.

[Yee94] B.S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon University,
May 1994. Page numbers refer to the 2E version.

[Yee99] B.S. Yee. A Sanctuary for Mobile Agents. In Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, pages 261–274. Springer-
Verlag LNCS 1603, 1999.

[YS02] E. Ye and S.W. Smith. Trusted Paths for Browsers. In Proceedings of the 11th
USENIX Security Symposium, August 2002.

[YT95] B.S. Yee and J.D. Tygar. Secure Coprocessors in Electronic Commerce Ap-
plications. In Proeedings of the 1st USENIX Electronic Commerce Workshop,
pages 155–170. USENIX, 1995.

[YY96] A. Young and M. Yung. The Dark Side of Black-Box Cryptography, or: Should
We Trust Capstone? In Advances in Cryptotogy—Crypto 96, pages 89–103.
Springer-Verlag LNCS 1109, 1996.

[YYS02] E. Ye, Y. Yuan, and S.W. Smith. Web Spoofing Revisited: SSL and Beyond.
Technical Report TR2002-417, Department of Computer Science, Dartmouth
College., 2002.

[ZZPL03] X. Zhuang, T. Zhang, S. Pande, and H.H.S. Lee. HIDE: Hardware Support for
Leakage-Immune Dynamic Execution. Technical Report GIT-CERCS-03-21,
Georgia Institute of Technology, 2003.

About the Author

sign, implementation and validation; and at Los Alamos National Laboratory,
doing security designs and analyses for a wide range of public-sector clients.
Dr. Smith was educated at Princeton (B.A., Math; rugby team) and Carnegie
Mellon (M.S., Ph.D., Computer Science; cycling team). If you corner him
at a conference, he might start talking about trail-running, orienteering, ultra-
marathons, or bicycles.
http://www.cs.dartmouth.edu/~sws/

Sean Smith is currently on the faculty of the Depart-
ment of Computer Science at Dartmouth College, serves
as director of the Cyber Security and Trust Research
Center at Dartmouth’s Institute for Security Technology
Studies, and also serves as Principal Investigator of the
Dartmouth PKI Lab. His current research and teaching
focus on how to build trustworthy systems in the real
world. He previously worked as a scientist at IBM T.J.
Watson Research Center, doing secure coprocessor de-

Index

“right of retroactive paranoia”, 119
“the real thing, doing the right thing”, 73, 99,

178, 184, 199, 202, 205, 214, 218

Abraham, Dennis, 20
ABYSS, 44,48, 55, 56, 125
ACL2, 128
AEGIS, 52, 198, 200, 208, 211
Anderson, Ross, 18, 23, 29,34,39,42, 58
Antonelli, Charles, 154
Apache, 32,149, 191
Appel, Andew, 24
AppleShare, 32
applications

auction, 16, 167
audit, 12, 46
box office, 152
cash, 12, 13, 17, 46, 65
credential, 16, 169
downloadable content, 148
DRM, 14, 15, 146
DRM for Big Brother’s Computer, 153
e-commerce, 144
gaming, 16
general, 45
healthcare, 12, 16
host integrity, 148
insurance, 16
logos, 147
nonrepudiation, 145
P2P, 17,168
postal, 47, 53, 167
privacy, 147
private information, 155
S/MIME, 169, 173
student grades, 151
taxes, 146
voting, 152

Arbaugh, Bill, 52, 174, 198, 211
Arbuagh, Bill, 201

argument validation, 26
ARM, 204, 206
Asonov, Dmitri, 158, 162,
atomicity, 13, 28, 47, 88
Austel, Vernon, 128

Bar-El, Hagai, 23, 28
Barak, Boaz, 202
Barsamian, Alex, 194
Bellcore attacks, 22
Beneš network, 211
Beneš networks, 161, 171
Berkeley, 202
Berkeley Packet Filter, 154
Best, Robert, 44, 197
Bezuidenhoudt, S. Johann,
BIOS, 52, 62, 176, 180, 18
BirliX, 116
BITS, 51
blinding, 31
Bond, Mike, 29, 57
Boneh, Dan, 168
brain-surgery attacks, 24
Brodley, Carla, 201
buffer overflow, 25

Cambridge, 29, 42, 204
capabilities, 204
CCA, 56, 69, 212
Cerium, 199,212
Chaum, David, 47,48
Cidatel,46
Citadel, 45, 49, 53, 55, 56,
Clark, Paul, 51
Clulow, Jolyon, 29
CMU, 46, 56, 202, 213
code injection, 25
Columbia, 206
Comerford, Liam, 44,46
Common Criteria, 138

238

configuration, 104, 115–117, 187
CoPilot, 201
CP/Q++, 27, 69, 149, 152, 154, 158, 170, 173,

212
cryptographic accelerators, 3
Cryptography Research, 42
cryptopaging, 49

Dallas Semiconductor, 4
Dallas Semiconductors, 22,203
DES, 28,32,33, 50, 88, 137, 150,211,212,219
Devadas, Srini, 198,211
differential fault analysis, 22
differential power analysis, 33
DigiCash, 47
direct memory access, 22
DMA, 50, 179,201,206
Donald, Bruce, 201
dongle, 4
DRM, 207
dual-ported RAM, 22
Dyad, 46,49, 51,56, 213

EEPROM, 23, 28, 36
Electronic Frontier Foundation, 18
encrypted functions, 202
encrypted loopback filesystem, 187
endianness, 180, 213
epoch, 104, 115–117,119, 187
explosives, point-source, 24
export laws, 59

FIPS, 123, 125, 138,214,215
FLASH, 26,28, 37, 88
Fortezza, 203
forward security, 116
free Pepsi, 40
Freytag, Johann-Christoph, 158
FSM, 127, 134

Garfinkel, Tal, 200
Gasser, Morrie, 101
Gemplus, 28
Genuinity, 202
Georgia Tech, 201,214
gnu-emacs, 46
Gnutella, 168
Goldreich, Oded, 162
Govindavajhala, Sudhakar, 24
Grid, 169
Gutmann, Peter, 39, 125

Hack, Michel, 37
Hamlet, 27
Hawblitzel, Chris, 168
Herzberg, Amir, 148
Hewlett-Packard, 181

HIDE, 201
Higher Education Bridge CA, 192
Hoffmann, Lance, 51
Honeyman, Peter, 154
Honeywell, 38
Humboldt, 158

Iliev, Alex, 154, 158,159,163
Intel, 1,204
Internet2, 156,218
Itoi, Naomura, 52, 149, 167, 170

Jamieson, Leah, 202
Java, 24
Jiang, Shan, 149, 151, 171
JXTA, 168

Karger, Paul, 38
Kennell, Rick, 202
Kent, Steve, 44, 46, 197, 200, 219
Kerberos, 167
Kerckhoff’s law, 11
Kim, Gene, 51
Knop, Evan, 169
Kocher, Paul, 32,42
Kuhn, Markus, 22, 23, 34, 39,42

LaGrande, 1, 204, 207, 209, 214
Läkande Datorer, 34
Lampson, Butler, 115
language-based security, 24
LANL, 55
Lee, Ruby, 199
Lie, David, 197
light bulbs, 24
Linux Security Module, 186
LOCK, 52
Longhorn, 207, 215
Lorch, Markus, 170

MacDonald, Rich, 180, 194
Mach, 49
Marchesini, John, 168, 170, 194
Marianas, 168, 170
Maryland, 201
Maurer, Ueli, 108
MEMS, 201
Merkle, Ralph, 166, 198,214
Michigan, 152

48, 75, 125
microcontroller, 36
Microsoft, 1,204,207
Minami, Kazuhiro, 152
Miniboot, 68, 82, 83, 86, 129, 215
MIT, 44, 198–200,211
model checkers, 128
multi-party computation, 202
MULTICS, 38

INDEX

INDEX 239

My Proxy, 169

Needham, Roger, 29
Neopostage, 167
network interface cards, 5
NGSCB, 1, 204, 207, 209, 215, 216
Nicol, Dave, 168
NIST, 138, 214
Novotony, J., 169
NX, 203

obfuscation, 202
oblivious circuits, 160, 171, 216
oblivious RAM, 44, 162
OpenCA, 191
operating envelope, 42, 57
Orange Book, 124, 138
Ostrevsky, Rafi, 162

Packet Vault, 152, 154
Palladium, 1, 207, 216
Palmer, Elaine, 56
partitioned computation, 14, 45, 46
PCMCIA/PC cards, 4, 58
PCR, 175
PDP-10, 30
Penn, 52, 211
Periera, Mindy, 169
Perrig, Adrian, 167
personal tokens, 3
PGP, 152
Pitney-Bowes, 167
porcupine, 137
POST, 89
postal meters, 5
Price, W.K., 48
Princeton University, 24, 199
PRISM, 29
private information retrieval, 157
PRNG, 137, 161
property-based attestation, 121
PSI Systems, 167
Purdue, 51, 201, 202, 214

Quake, cheat-resistant, 200

semi-trusted mediator, 17, 168
Seshadri, Arvind, 202
Shankar, Umesh, 202
Shibboleth, 156,218
shipping channel, 60
side-channel analysis, 30,78
SIDEARM, 52
simple power analysis, 33
Skorobogatov, Sergei, 23
SmashGuard, 201
Snort, 154
soft tempest, 34
software tamper resistance, 202
Song, Dawn, 167
Spafford, Gene, 51
SSL, 12, 32, 121, 142, 149, 191
Stabiner, Josh, 192, 194
stack smashing, 25
Stanford, 32, 197, 200
storage root key, 175
Sun, 38
SWATT, 202

TEMPEST, 30, 34, 219
TENEX, 30
Terra, 194, 200, 208, 219
theorem provers, 128
time-of-check/time-of-use, 27, 51, 219
timing attacks, 30
Transaction Security System, 49
transition certificate, 79, 115, 116
Tripwire, 51
trustable, 2,11
trusted paths, 58
TrustZone, 204, 206, 209
Tsudik, Gene, 168
Tygar, Doug, 46, 49, 51, 167, 213

van Doorn, Leendert, 200
van Eck, Wim, 34
van Oorshot, Paul, 202
Vanrenen, Gabe, 168
virtual machine monitor, 44
virtual secure coprocessing, 199

Wave Systems, 203
Weingart, Steve, 24, 39, 41, 42, 48, 53, 55, 73,

75, 99, 125
White, Steve, 44, 46, 125
white-box cryptography, 202
Wild, Omen, 194

X.509, 159
XOM, 197, 201, 208

Yee, Bennet, 46, 49, 51, 65, 167, 174, 197, 202,
212, 213

Yet Another CA, 178

ratchet locks, 74, 82, 115, 176, 181
Rescorla, Eric, 171
root secure, 2
RSA,31
RTM, 176

S/MIME, 218
Safford, Dave, 2, 157, 217
Sailer, Reiner, 201
Schell, Roger, 38
secure boot, 47, 50, 149
secure coprocessors, 2
SELinux, 193

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

